
1Th~ tJ ropy

NAVAL POSTGRADUATE SCHOOL
MontereyCalifornia

00

TESI

DATA STRUCTURES AND ALGORITHMS
FOR SUPPORTING GLAD INTERFACES

by

Paul D. Grenseman

June 1988

Thesis Advisor: C.T. Wu

Approved for public release; distribution is unlimited

* DTICE L ECT Euffw

t88 1031 1f'-
111 -p l I

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASS'r:CAT'ON 11b RESTRiCTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CASSiFCATiON ALTHORiTY 3 DISTRIBUTION AVAILABIL c' 01qCORI

Approved for public relc-a u"
2b DECLASSIFiCATION!'DOWNGRADING SCHEDULE distribution is unlimi tec

4. PERFORMING ORGANIZATION REPORT -\UMBER(S) 5 MONITORING ORGANIZATION REPCI(',,

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATiON

% (If applicable)

Naval Postgraduate Schooll Code 52 Naval Postgraduate Schoc!
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5G0G

Ba. NAME OF FUNDING i SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT iDENTFiCAT,ON NN'Sii

ORGANIZATION I (If apolich le)

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK .V()po , Nil
ELEMENT NO. NO INO (NC .,<t ¢

1 TITLE (Include Security Classification)

DATA STRUCTURES AND ALGORITHMS FOR SUPPORTING GLAD INTERFACES

12 PERSONAL AUTHOR(S)

Grenseman, Paul D.
13a. TYPE OF REPORT 13b TIME COvERED 14. DATE OF REPORT (Year, iOrt. Day) 15 PAGE c,,

Master's Thesis I FROM TO 1988, June 179
. 5 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block numbepr

{ FIELD GROUP SUB-GROUP Graphic Interfaces; Relational Databases

19 ABSTRACT (Continue on reverse it necessary and identify by block number)

...The relational database model has become the most popular and widespread
* database model. Most current database systems are based upon or related to

the relational model. However, the relational model is beset with signifi-
cant limitations, pitfalls and deficiencies. The relational model can be
substantially improved with graphical interfaces. To this end, the Graphics

Language for Accessing Database (GLAD) can provide easy to use and learn

graphics inte':faces for the relational model. Data structures and

algorithms for GLAD will be presented to extend the relational model.

, .,~ I

'IlAI~I 2' ABSTRACT SECURITY CLASSIFICATION

*l i ' :
') "

.. M ,-:j E' A,,ME AS R P E DTIC USERS Unclassified
," , -. - - - ,' ,,22b TELtiPHONE Include Area Code) .zc OFFICE SYMBOL

Prof. C.T. Wu (408) 646-3391 Code 52Wc
" DD FORM 1473, 9 APR. _dton may be used unt4l-exhausted SECURITY CLASSIFICATION OF T IS PAGE

Aill other editions are obsolete
QU.S.Goverment -tPqf,. "le 19 -O-4

i UNCLASSIFIEDI

U- w - w W * * -
'SW

Approved for public release; distribution is unlimited

Data Structures and Algorithms for Supporting
GLAD Interfaces

by

Paul D. Grenseman
Captain, United States Marine Corps

B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author: 1.
Paul D. Grenseman

Approved by:
C.T. Wu,6nesis Advisor

D.K. Hsiao, Second Reader

Robert B. McGhee, Acting ChairmanDepartmentpo omp 1 Science

James M.,*Fremgen,
Actingfea of Irvfrmation and\Policy Sciences

ii

ABSTRACT

The relatior 1 database model has become the most

popular and widespread database model. Most current

database systems are based upon or related to the relational

model. However, the relational model is beset with

significant limitations, pitfalls and deficiencies. The

relational model can be substantially improved with

graphical interfaces. To this end, the Graphics Language

for Accessing Database (GLAD) can provide easy to use and

learn graphics interfaces for the relational model. Data

structures and algorithms for GLAD will be presented to

extend the relational model.

Accession For
NTIS GRA&I
DTIC TAB r
Unannounced I CN.S r/
Justification

By

Distribution/_.

Availability Codes

Availi and/or
Dist Special

@I iii

0

TABLE OF CONTENTS

I. INTRODUCTION - ------------------------------------ 1

A. GLAD WILL RESOLVE SEMANTIC LIMITATIONS 2

B. GRAPHICS OBJECTS IN GLAD -------------------- 2

C. STANDARD RELATIONAL LANGUAGES 4---------------4

D. IMPROVING THE RELATIONAL ENVIRONMENT -------- 5

E. GLAD DEVELOPMENT 9----------------------------9

F. DATA STRUCTURES AND ALGORITHMS FOR THE
GRAPHICS INTERFACE i--------------------------11

G. OUTLINE -------------------------------------- 12

II. THE NEED FOR AN INTERFACE AND EXTENSION --------- 16

A. A HISTORY OF THE RELATIONAL MODEL ----------- 17

B. PITFALLS AND DRAWBACKS OF THE
RELATIONAL MODEL ---------------------------- 19

C. SEMANTIC LIMITATIONS OF THE RELATIONAL
MODEL --------------------------------------- 21

D. ALTERNATIVES FOR IMPROVING THE
RELATIONAL LIMITATIONS ---------------------- 22

E. EXTENDING THE RELATIONAL SYSTEM ------------- 23

F. BASIC RELATIONAL SYSTEMS ARE DIFFICULT
TO LEARN AND USE ------------------------------ 25

G. RELATIONAL QUERY LANGUAGES MUST BE
IMPROVED ------------------------------------- 28

H. GEM AS AN EXTENSION OF THE RELATIONAL
MODEL -- 30

I. VALIDATION OF THE NEED FOR A BETTER
INTERFACE ------------------------------------ 32

iv

w 1 U

III. OBJECT ORIENTED LANGUAGES AND GRAPHICS
INTERFACES -------------------------------------- 34

A. OBJECT ORIENTED REPRESENTATION OF THE
DA'2ABASE MODEL ------------------------------ 35

B. THE INTERFACE FOR ACCESSING DATABASE -------- 37

IV. THE QUERY WINDOW -------------------------------- 39

A. GLAD TO SQL --- --------------------- 39

B. GLAD QUERY OBJECTS THAT REFER TO OTHER
QUERY OBJECTS ------------------------------- 68

C. GLAD'S CORRESPONDENCE TO SQL ---------------- 73

V. SYNTAX FOR THE GLAD SCHEMA ---------------------- 74

A. A VIEW OF THE UNIVERSITY DATABASE ----------- 74

B. SCHEMA CONSIDERATIONS ----------------------- 82

VI. DATA STRUCTURES TO SUPPORT THE INTERFACES ------- 83

A. A USEFUL ANALOGY ---------------------------- 84

B. ABOUT COLLECTIONS --------------------------- 85

C. GLAD DATA STRUCTURES FOR THE UNIVERSITY
DATABASE ------------------------------------ 89

D. THE QUERY COLLECTION ------------------------ 93

E. THE PHYSICAL DESCRIPTION -------------------- 95

VII. ALGORITHMS FOR THE TRANSLATION ------------------ 97

A. THE TRANSPARENT LINK TO THE SYSTEM ----------- 97

B. GLAD ON TOP OF SQL --------------------------- 98

C. THE TRANSLATION SCHEME ---------------------- 99

D. AN ALGORITHM FOR THE TRANSLATION OF GLAD ---- 101

E. AN ANALYSIS OF THE TRANSLATION ALGORITHM ---- 103

F. FROM EXTENDED SQL TO SQL SYNTAX ------------- 108

G. A TRANSLATION EXAMPLE ----------------------- 109

0v

VIII. CONCLUSION 117

A. EXTENDING THE RELATIONAL SYSTEM ------------- 118

B. THE OBJECT ORIENTED SYSTEM ------------------ 120

C. FUTURE GLAD APPLICATIONS -------------------- 120

D. REMARKS ON IMPLEMENTATION ------------------- 122

E. EPILOGUE ----------------------------------- 124

APPENDIX A: A SIMULATED GLAD TRANSLATOR -------------- 126

APPENDIX B: TRANSLATOR OUTPUT ------------------------ 160

LIST OF REFERENCES ------------------------------------ 170

INITIAL DISTRIBUTION LIST ------------------------------- 172

vi

I. INTRODUCTION

Atthough considerable work has been accomplished on

extending and improving data models with graphical

interfaces, the graphical or pictorial approach to

representing a database is far from being fully explored.

The potential of this approach has not been fully realized

with current database systems that use a pictorial

representation of the data stored in the database.

Therefore, many more approaches will be proposed, explored

and implemented before graphical interfaces for database are

maximized for the best possible user environment and

powerful semantic extension of a basic data model.

Graphical interfaces can be employed to extend the user

capabilities of the entire audience of database users. In

particular, the naive user will greatly benefit from

graphical interfaces to a database model.

Progress with graphics interfaces has largely been

confined to academic and prototype systems. Most current

database systems have poor user interfaces that do not

represent data in an easily understandable manner. For

example, the popular relational database system represents

data as tuples in tables. The user interface is a standard

relational type of query language that has no graphical or

pictorial features. Without good user interfaces, most

1

database systems are beset with drawbacks, pitfalls and

limitations for the database user. These limitations can be

resolved by extending the capabilities of these systems with

additional features and by adding easy to use and learn

database interfaces.

A. GLAD WILL RESOLVE SEMANTIC LIMITATIONS

Limitations with many basic data models, such as the

relational model, are widely recognized. These limitations

are caused by lack of semantic capability. Implementations

of inadequate semantic models can result in systems that are

difficult to learn and use. When implemented, the Graphics

Language for Accessing Database (GLAD), proposed in Wu (Ref.

l:pp. 1-11], will provide a user with semantic capabilities

that a basic model does not have and a friendly, easy to use

and learn pictorial database environment. GLAD will

ultimately eliminate many of the deficiencies that make the

relational model difficult for the naive database user to

learn and use. The naive database user will be able to

access and manipulate a database with a minimum amount of

difficulty. GLAD will utilize a unique graphics object

approach to eliminate the relational model's deficiencies

and limitations.

B. GRAPHICS OBJECTS IN GLAD

GLAD shall utilize Graphics Objects to pictorially

represent data items as simple pictorial objects. These

2

i .
0!

graphics obj ects a i. rerds!t, nr~~ !%-k~

in the ciat4045. '04h.. ..4 4 - 3 -

natural torC tne ~i~ tj A~

to represent enitte ,r Isaas A'lc ,t az*1j

connect the aOje,,t*- t!~s 'C.15

simply reviewinq c:1rrrcft ! . !a

and retLned v i n4 4 ao~J o4 *-!tctei*,~ J-~a a

acceptance. popu14rit(a rI 0,4ec.adr-; r Trn1r (-?Ua.

imp Lemntat ion has i:Vjc IM .'! t w~i' kI-

used~re~n 1P'..Lnco ta Ih"I I~~O S,* *0 - fw

perfect cAndidate for extonsix-n bi GLBAZ. T h aa ~r a r.%

desieqn and iMplPMent~tjon *'n!' nf pygtariQ =;ru ;Wr -P; %-

tNGPES can be built up-on TI !ak'a w-r1 tt~elj.1t4 h

Resources ca n be t-itLl ~ ~ co 11 yr ' al

effective h iqher I e v P interfic. ! P? h ; qrI-, P

*interfa~ce that w 111 be prov i Jel by !.A t-' -A~ I~ I

substantial imrprovement over the stanlarl mijery lanuale.

V %-V

INI L 10 4 I

-077

C. STAIDARD RELA:"!CAL LANG I 'JAZE

Relattonal Qqery L~ngages are r:ftcult to learn and

prce'r ln14e5 5 Le i as MuCm as pcssale
or t ot 47 e I Iminated. GLAD ':!! provide graph2a

Lntertaces that eliminate the syntactic difficulties ct

standaird relat.ona! models. Semantic power and capability

small be addeo to Fhe basic model. GLAD will support

complex ob)ects and data types. These additicnal

capabLlLties will make the database environment easier to

utilize.

1. Standard Ouery Languages Are Unsuitable For

Difficulties associated with standard relational

languages makes them unsuitable as an end user language for

a database. High level, non-procedural languages, such as

QUEL or SQL, are designed to allow the end-user to avoid

mastering the details of the embedded programming language.

Thus, the user does not have to understand the syntax,

semantics, data structures and other features of an embedded

host language, effectively eliminating the difficulties of

navigating the data through the system. The user is only

required to manipulate the high level set language commands

to formulate the query. However, the use of set language

U constructs to formulate queries is not always a trivial

task. A significant amount of syntax and semantics must be

mastered to formulate meaningful queries.

4

2. An Environment That Is Unsuitable For Naire Users

The standard query language environment is not well

suited to naive database usar-. Learning and using a

conventional query language is difficult for users with or

without only minimal computer science and mathematics

background. This situation is unacceptable because the

difficulties associated with mastering the syntax and

semantics of conventional query language handicaps a large

portion of the database user populace. The standard

relational environment must be improved for this large

category of users. Systems that do not consider large

segments of the user populace will ultimately be replaced.

D. IMPROVING THE RELATIONAL ENVIRONMENT

Considerable work has been accomplished in softening the

harsh and unfriendly environment presented to the user by

systems that are based on the relational model. It is

difficult for an office worker, administrator or secretary

to relate to data representation and presentation in a

manner that is dissimilar and seemingly unrelated to the

normal way that they obtain, review and process data. Human

factors studies have shown systems that relate new require-

ments to familiar concepts are easier for workers to learn

and use than systems that do not consider a user's working

*environment and previous experience.

5

S.

%S

1. OBE and Electronic Forms

Systems such as QBE by Zloof [Ref. 2:pp. 324-342]

and Query by Electronic Forms by Miyao [Ref. 3:pp. 17-25]

have largely remedied the above mentioned problem. With

QBE, the user is supplied example queries that can be used

to formulate his associated query. The example query serves

as a template for query formulation. Although this approach

is powerful as a learning aid or tool, it is limited to a

finite amount of frequently used query examples. If the

user wants to formulate an unusual or complex query, he may

be unable to find a QBE example to serve as a template for

his extraordinary requirement. The Electronic Forms System

provides a type of graphical representation of a form or

document that is similar to an office form that is used in

the business envLronment. The advantage of this approach is

the correlation between the paper form and the electronic

Adsplay scroen. The mechanis= that Is presented to the user

for ,accessinq data is similar to a real world paper form

thit exists in his office environnent. The drawback is that

the Flectronic Forms approach is very l~inted in scope and

must be 1:tk'2' r the huSAness environrert.

Nevertheless. these system's rah~ra: a prcaches to c Jno

the user 3re i sinzi:-[it r-r;.-ent qi s pf ac'ess *cr

the iabaser

2. The Early Graphical Approaches

Many of these early graphical approaches to database

are user friendly but lack powerful semantic capabilities.

In developing a graphical system for database representation

and access, we not only want to provide a user friendly

environment but also want to add additional semantic

capability to the basic relational model. In particular,

the graphical system must have the semantic capability of

direct representation of non-atomic data.

3. Relational Data Representation

The basic relational model is unable to directly

represent certain types of data. This shortcoming is due to

the relational model's view of data stored as atomic types

in tables. An experienced user may be able to indirectly

represent non-atomic types of data by joining successive

tables of data together to ultimately represent a complex

data type. Unfortunately, this technique requires CC.

substantial knowledge of database beyond the scope of what

should reasonably be expected from a naive database user.

Glad will provide complex data type representation of non-

atomic data. The details of this type of data representa-

tion will be entirely shielded from the user. To the user .

point of view, a complex data type is handled the same way

as an atomic data type, such as integer, real or char. In

fact, this is certainly not the case. A significant effort

will be required to allow these special kinds of data to be

I

' ;: : -. :, ,: ::€ -, , { <' k "". "'
•0

directly represented in the GLAD implesentatlon. However,

from the user view, the complex data types are accssed

directly because the implementation of nen-atomic data

representation will make data retrieval transparent to the

end-user. Therefore, GLAD will resolve a serious relational

database limitation, the inability to express and represent

certain kinds of non-atomic intormation.

4. Lack of Semantic Features

The basic relational model lacks powerful semantic

features. In addition to the previously mentioned problems,

the relational model has the following semantic

deficiencies:

1. It is unable to represent generalized entities as
composites of more specialized entities.

2. The relational model is unable to represent aggregate
entities as a collection of atomic and non-atomic sub-
entities.

3. It is unable to classify instances of certain types of
objects.

4. The relational model can not show the associations

between entities in the database.

5. GLAD Will Eliminate Relational Problems

A lack of powerful higher-level abstraction repre-

sentation prevents the basic relational model from providing

a powerful and flexible user interface. The basic

relational system can not accurately represent and display

entities of a real world environment that are composed of

both complex and simple sub-entities. GLAD will eliminate

all of the previously mentioned semantic limitations by

8

*1 s

supporting the following powerful abstract database

concepts:

I. aggregation

2. classification

3. generalization

4. association.

6. Object Oriented Approach

Powerful abstraction concepts such as the above

mentioned aggregation, classification, generalization and

association are best implemented with object oriented

programming. These concepts require objects to be

represented as composites of other objects with

specializations and generalizations of object type.

E. GLAD DEVELOPMENT

GLAD is being developed with an object oriented

programming approach. The object oriented approach for

database development seems to be well suited for database

representation. Database objects can be designed to

represent real world entities in a natural and realistic

manner. The object oriented approach is well suited for

supporting complex data types and powerful semantic

features. Conventional programming languages separate data

and program instructions. This separation severely limits

the capability of a conventional high level language to make

an easily understandable representation of real world data

objects.

9

1. GLAD As An Extension of The Relational Database

GLAD will combine object oriented graphics

interfaces with a standard relational database system. In

essence, GLAD sits on top of the relational model and adds

object oriented flavor to the standard relational system.

Therefore, the combined system is neither purely object

oriented nor set oriented. The new system will ultimately

be the synthesis of the high level, object oriented,

graphics interfaces and the basic relational database

system.

Since GLAD will be built on top of a relational

model, the object oriented graphics language must have the

ability to interface with the relational model. Queries

that are received in GLAD'S object oriented syntax must be

translated into relational syntax to access data that is

stored in the relational backend. The retrieved data, in

relational format, must be reformatted to object oriented

syntax and ultimately displayed to the user via the graphics

interface.

2. The High Level Interface

GLAD provides an effective data manipulation

interface for the database. The graphics objects are

actually used to access the information contained in the

database. This approach seems to be well suited for easy

learning and use by all categories of users because GLAD

10

uses a single coherent interaction method for both the data

manipulation and the data application program interactions.

The hich level, graphics interface objects prov:-1e

the basis for this thesis research. This research is a

portion of a project that is using ACTOR by Whitewater fRer.

4:pp. 25-115], an object oriented programming language, to

develop a user friendly interface to the relational database

model. In addition, GLAD's implementors hope to provide a

semantically rich data model that users directly manipulate

in gathering information with a minimum amount of effort.

This thesis is done in conjunction and in parallel with

research on a data manipulation and data definition language

for GLAD. The above mentioned areas will not explicitly be

covered in this paper. References to the parallel areas

will only be made in conjunction with data structures or

translation of the information that is held in the object

oriented interface.

F. DATA STRUCTURES AND ALGORITHMS FOR THE

GRAPHICS INTERFACE

This study's primary focus is the definition of data

structures to store data that is pertinent to the designated

database and development of algorithms that shall be

utilized to translate object oriented information into

relational syntax. To this end, SQL like syntax will be

used to illustrate the translations. In addition, careful

consideration must be given to how data shall be stored in

6i

the o]Ject zrlente'4 p4r41i4!M, There are many possible ways

to store lati w tnil [ne ='e. Data should be stored in a

manner tnrit vr. 'L e.re" l'-"e and etficient transla-

tLon. Ot 5or4ry imort4nce Is an analysis of the basic

retatLnal model's ler1cencies and validation of the need

for a grapniQ4 Intert4ce.

0. OUTLIN*E

This research shall present one major topic per chapter.

KLqhi r Level soet-oct~ons for tVe graphics interfaces will

be discussed in conjunction with the major focus of this

thesis: data structures and algorithms ror supporting the

graphics interfaces. A simulator using the translation

algorithm is included in Appendix A to show possible GLAD

translations and Appendix B to show translated output. In

addition, a brief conclusion will be offered in support of

the major topics. The major topic areas of this thesis are

presented in the following manner:

1. Introduction

2. The Need For An Interface And Extension

3. Object Oriented Languages For Graphics Interfaces

4. The Query Windows

5. Data Structures To Support The Interfaces

6. Algorithms For The Translation

7. Conclusion.

The above listed topics are presented from a higher

level perspective to a lower level perspective to present a

12

S.

coherent argument for GLAD as an object oriented database.

In addition, data structures and algorithms to support this

interface shall be discussed in detail. The topics are

presented to show the user a higher level, abstract view of

the requirement and a possible scheme for the physical

implementation of the interface.

1. Introduction

In the introduction, the major topics of this

research were introduced. The introduction s,,all preview

the entire thesis and lead into the need for a graphics

interface.

2. The Need For An Interface And Extension

In Chapter II, the need for an interface to the

relational model will be validated. Chapter II will explore

the history and foundation of the relational model from Ted

Codd's original research to the relational based SQL and

QUEL systems that are today's industry standards. These

relational systems will be shown to be inadequate for the

entire audience of database users. To that end, a graphics

interface to the relational model will be proposed to

eliminate relational limitations and deficiencies.

3. Object Oriented Languages For Graphics Interfaces

In Chapter III, object oriented concepts will be

discussed. Languages that are based on these concepts are

particularly well suited for implementing graphics inter-

faces. The language for implementing these systems, ACTOR,

13

will be dis3cussed1 afi andyZ& .iUftls s 1s

quent chapters.

4. The 'V

The query vinow vL. L- predent& In J. 'dte7 2.' z~

the principle nterrice o tnc _zer- A w.ae var~et'. c!

queries shaLl be presenteO 4r4 correlsttons b te shown tc

the SQL syntax of tia rc~atfna4 system. :n addd*lon'

correspondence bowoon "tAO qar~es with non-4tomic data

types will be discussed.

In Chapter V, the syntax for the GLAD schema will be

defined. In addition, correlAtost between the GLAD,

extended SQL and SQL schema will be shown. The example

UNIVERSITY database, presented In Wu (Ref. 1:pp. 1-10), will

be used to illustrate the detinition of the GLAD schema.

The major objects and sub-objects of the UNIVERSITY database

illustrate both complex and simple data types.

6. Data Structures To Support The Interfaces

In Chapter VI, data structures to support the GLAD

interfaces will be defined. The Collection is the GLAD

class that will be utilized to form all of the database

objects. Various descendants of the collection class, such

as KeyedCollection, Set, Array and Dictionary, will be

utilized to represent entities, attributes and query

collections.

14

7. Algorithms For The Translation

In Chapter VII, algorithms for the translation of

the GLAD query collections to relational format will be

presented. These algorithms will be explained in detail

with example queries to show the translation scheme. In

addition, a simulator for object translation was constructed

to show possible translations of queries. Pascal code for

the simulator is located in Appendix A with output located

in Appendix B.

8. Conclusion

A brief conclusion shall reemphasize the major

points of this thesis. Potential future applications of

GLAD will be discussed with an emphasis on military applica-

tions. In particular, the naive user will benefit greatly

from learning database concepts with GLAD.

1

15

II. THE NEED FOR AN INTERFACE AND EXES.-C'

If the relational database systems vere ent's=-,

suitable for the entire audience of database users t:=u=

would be no need for various interfaces to and extens cn!:

the relational model. The standard relational systems a:e

generally adequate for trained, casual and experiancea.

sophisticated users. But for the naive user. t .=

untenable. Since many users can be categorl:ed * ,

users, system designers should consider the naive t wr=2

lack of database background and training when devisinq tho

syntax and semantics of the database system. Unfortunately,

many system designs gave little consideration to the novi~ae

user.

Recent advances in computer technology have =ad@ data-

base technology available to a wide spectrum of organiza-

tions, institutions, and businesses. The demand for

database technology has drastically increased as various

organizations assimilate computer technology and replace old

manual, automated and batch oriented systems with

sophisticated on-line database systems. Systems that

require the smallest amount of overhead costs and time for

training will become the new industry standards.

The history and evolution of the relational model

provides insight into the limitations and deficiencies of

16

the model. Zn addition, the relational model can serve as a

viable foundation ror building higher level, database

abstractions. An analysis ot the relational model shall

confirm the need for a powertul, user friendly interface to

the relational model. The interface should have semantic

capabilities that basic systems do not possess and provide

easy to use and learn data access, data definition and data

manipulation features.

A. A HISTORY OF THE RELATIONAL MODEL

Database management systems have evolved from simple

collections of flat files to complex data base models.

These models are utilized by the sophisticated products that

are today's industry standards. A significant advance in

database technology has been attributed to Dr. E.F. Codd.

While working at the IBM San Jose Research Laboratory, Codd

wrote his classic paper, A Relational Model for Large Shared

Data Banks. This paper, Codd [Ref.5:p. 1], was the basis

tor the unified set of theoretical ideas that became the

relational model. While reflecting on the recent history of

database development, Chris Date, a former database resear-

cher who worked with Dr. Codd, wrote that prior to the

development of the relational model, database models lacked

solid principles and well-defined terminology. Dr. Codd

added mathematical rigor to his database model to validate

his ideas [Ref. 6:p. 99].

17

V0e

1. Relational Products

The relational model has received wide spread

acceptance and acclaim. The simplicity and the uniformity

of the relational data model has contributed to its popular-

ity. Successful commercial relational database systems have

been developed. Some of the successful relational products

are listed below:

1. IBM DB2 utilizes IBM hardware and IBM MVS software.

2. IBM SQL/DS utilizes IBM hardware and IBM VM & DOS
software.

3. IBM QMF serves as a front-end for DB2 or SQL\DS, and

uses Fujitsu OS IV F4 software.

In fact, most of the current systems are in some way

based upon the relational concept. Furthermore, many

prototype and research systems are actually utilizing, based

on, related to or extending the relational model. Some of

these systems are as follows:

1. Interface for Semantic Information System (ISIS) is an
experimental system for graphically manipulating a
database. ISIS is based on a simply specified high-
level semantic data model. [Ref. 7:pp. 328-342]

2. Gambit is an interactive database design tool for data
structures, integrity constraints and transactions.
It supports the definition of static data structures
in terms of the extended relational model. [Ref. 8:
pp. 399-407]

3. An Intelligent Database System for End Users (AIDE/AI-
DE-II) provides a user friendly and an easy to use
query language called AQL. [Ref. 9:pp. 25-30; Ref.
10:pp. 34-37]

4. Graphics Language for Accessing Database (GLAD). It
is a unified interface method for interacting with a
database. It is currently being built on top of a SQL
based relational model. [Ref. l:pp. 1-11]

18

B. PITFALLS AND DRAWBACKS OF THE RELATIONAL MODEL

Even though the relational database model has changed

and revolutionized database technology, it is not without

pitfalls and drawbacks. A bad relational database design

can have significant problems. As addrassed in Korth [Ref.

ll:pp. 173-181], the most serious problems are as follows:

1. The Repetition of Information.

2. The Inability to Represent Certain Information.

3. The Loss of Information.

1. Redundant and Repetitious Information

Repetition of information not only wastes valuable

storage space but also complicates database update. Simple

changes to a relational scheme can have a large impact on

the database. The addition of new tuples to the database

can cause problems. In some instances, repetitive informa-

tion will be needed for the new tuple to preserve the

validity of the table. These additions and updates can be

costly.

2. Certain Types of Information Cannot be Represented

Inability to represent certain information cai occur

during the database update. A problem o(curs when a tuple

must be added to a table, and the table does not possess

values for all of the attributes that are represented in the

table. The representation of an attribute without value is

not easily solved. A method for representing nothing or

null values must be utilized. In addition to the difficulty

19

L - i2 .- m - - , - . - . - = - . - b - -

of determining wndat synLils~

the system implementation or nu.. ' _ttrwL :i !_t

trivial task.

3. The Lossy Decomposition

Loss of information can occur when rei o.t.

schemas with many attributes are decomposed into many

schemes with fewer attributes. More tuples but less

information are obtained because many of the new t plei

contain erroneous information. When the new tuples contain

erroneous information, we have actually lost information ;%n!

do not have access to the information that was stored in the

old tuples that were decomposed. This situation is called a

lossy decomposition.

4. User Created Database

From the above mentioned problems, it is easy to en-

counter problems with database design. An obvious cure for

the problem is not allowing database users to create their

own databases. Management shall require that all dataL- .n

definition and creation be accomplished by database profes-

sionals of the organizational, information systems or data

processing department. This cure may be acceptable for a

highly structured organization with a centralized data

processing environment. However, it will not suffice for an

organization that has a decentralized data processing

department, encourages the use of computer technology, makes

personal computers available to many employees, and gives

20

.- W-

the workers a great deal of flexibility and latitude in

using this technology. For this type of organization, the

solution centers on giving these people the tools to

accomplish good database design and definition while

avoiding the common relational pitfalls. It appears that

basic relational systems are totally inadequate in this

regard.

C. SEMANTIC LIMITATIONS OF THE RELATIONAL MODEL

Perhaps the most serious limitation ot the relational

model is the LnabliLty to express complex real world

relationships. The inability to handle complex relation-

ships is defined in Tsur (Ref. 12:pp. 266-295) as semantic

scantiness. In Date (RC(.6:p. 609), this limitation is

discussed in detail. Date writes:

At the time of this writing (1983), most databas* syetema
relational or otherwise really have only a very limited
understanding of what the data in the database means:
They typically "understand" certain simple atomic data
values, and certain many-to-one relationships among those
values, but very little else (any more sophisticated
interpretation is left to the human user).

I. Poor Semantic Cauability

The relational database model's lack of semantic

capability precludes this model from co=pletely expressing

the natural relationships and mutual constraints that exist

between entities in the database. 'Ref. 12:pp. 286-2951

For real world entities to be expressed as corplex

non-atomic types, cumbersome and indirect methods must be

utilized. For example, postal worker could not be directly

21

_e4.

0

represented in the database as a type of or member of the

set of government employees. The Relational Model does not

allow direct representation of these complex types of data.

Only atomic types such as characters, integers and reals can

be directly represented in tables.

2. Semantic Deficiencies and Real World Situations

Although the relational model is very popular and in

many ways has revolutionized database technology, it not

only has serious design pitfalls but also is unable to

handle many real world situations. We must develop a better

approach to database modeling and design that can solve the

* above mentioned problems.

D. ALTERNATIVES FOR IMPROVING THE RELATIONAL LIMITATIONS

There are many specific approaches that can be utilized

to improve the limitations and pitfalls of the basic

relational database system. However, these approaches can

be classified into two groups. Database designers have the

lowing two basic alternatives for improving the relation-

aL mcdel:

1. The relational model could be abandoned, and a new
system could be designed and based on a new model.

2. The relational model could be extended with new
semantic capabilities added to existing systems.

1. The Construction of a New System

The construction of a new system based on a new

model is a monumental task. Developing the architecture,

commands and query language takes considerable effort and

22

time. Putting the new system into production requires

arduous debugging, testing and numerous iterations.

Developing the new system could be costly and unfruitful.

2. Adding Additional Features to Existing Systems

The other alternative, adding capabilities to an

existing relational system, may be a faster and more

effective way to develop a database system. With this

approach, capabilities could be added to systems with a

solid theoretical and functional base. Much of the dif-

ficulty associated with the system design and development

prccess would be entirely avoided. Advantages of this

approach include capitalizing on existing technology and

saving development costs that are associated with designing

new machines, backends and components. The new system, with

the additional capabilities, can be built on top of a

functional relational database system. The new system shall

be a combination or synthesis of the basic model and higher

level interface.

E. EXTENDING THE RELATIONAL SYSTEM

Consider the two following approaches that database

designers have utilized to extend the capabilities of the

relational system:
1. A modified query language approach that offers

enriched semantic and simplified syntax.

2. An object oriented approach that provides easy to use
graphical interfaces and rich semantic features for
the database user.

23

1. Extension Through Semantic Models

To understand the rationale for the first approach,

we must examine the concept of a semantic data model.

Consider the Entity-Relationship (E/R) semantic model

proposed in Chen (Ref. 13:pp. 1-10]. The E/R model can

conceptually be thought of as a thin layer or an extension

sitting on top of the relational model. An entity is a

distinguishable object of some particular type or a thing

which can be distinctly identified. An E/R relationship is

merely a one-to-one, many-to-one or many-to-many association

between the entities.

2. Advantages and Shortcomings

The advantage of this approach is that it provides a

built-in set of integrity rules to the user so he does not

have to explicitly formulate certain foreign key rules.

Foreign key rules are implicitly understood by the system

when the user specifies the type of the relationship as

many-to-one, one-to-one or many-to-many. Although these

concepts are powerful, they are not well-defined and left

open to a designer's interpretation.

3. A Step in the Right Direction

Chen's model has enjoyed great success as a design

tool. However, a successful implementation of the E/R Model

has not been accomplished. Perhaps this is due to the E/R

model's lack of precisely defined terms. Nevertheless,

these ideas form powerful concepts that can be used to

..

improve the relational model by making it easier to under-

stand. Understanding is enhanced by adding enriched

semantic features and simpler syntax to the basic relational

model.

F. BASIC RELATIONAL SYSTEMS ARE DIFFICULT TO LEARN AND USE

It is not surprising that many of the current relational

database products are conceptually very difficult for users

to learn and understand. Even with simple data base opera-

tions, a user may not understand how to formulate a query to

access the database. Analysis of primitive relational

constructs validates the need for a natural presentation of

the data to the user in an easy to understand manner.

1. Deficiencies with Relational Based Systems

Most database users do not have adequate math and

computer science backgrounds to effectively understand and

efficiently use the full range of primitive relational

constructs. Two of the most widely used relational query

languages, SQL and QUEL, are based on relational algebra and

tuple calculus. Even though the design details and imple-

mentation of the data model are shielded from the user, he

will need to understand certain types of math-like con-

structs that are related to the represr.ntation of data that

is stored as tuples in tables.

Consider the complex SQL query contained in Date

[Ref. 14:pp. 76-77] and shown in Figure 1.

25

Select supplier names for suppliers such that there does
not exist a part that they do not supply.

SELECT SUPPLIER NAME
FROM SUPPLIER
WHERE NOT EXISTS

(SELECT *
FROM PARTS
WHERE NOT EXISTS

(SELECT *
FROM SHIPMENTS
WHERE SUPPLIERNO# = SUPPLIER.SUP-
PLIER NO#

AND PARTNO# = PARTS.PARTNO#));

Figure 1. Complex SQL Query

To formulate this query the user must have extensive

knowledge of many different math and computer concepts. In

addition, it must be noted that the above method is not the

only way to formulate the query to retrieve the supplier

names. Even though the above query is ti.3 most literal

interpretation of the request, there are numerous ways to

formulate this complex query. This situation can be

overwhelming to the inexperienced user. For example,

consider the following nested query contained in Date

[Ref.14:pp. 67-68], observe the differences in query

constructs, and determine which query is the easiest to use

for 'Get supplier names for suppliers who supply part P2':

1. SELECT SUPPLIER NAME

FROM SUPPLIER
WHERE SUPPLIER NO# IN

(SELECT SUPPLIER NO#
FROM SHIPMENTS
WHERE PARTNO# = P2);

26

KAZ Kni~ An n ilyol MTV Kn I-I vV -u- v v ILK FM WI vn

2. SELECT SUPPLIER NAME
FROM SUPPLIER
WHERE SUPPLIER NO# IN

('S1', '$2', 1S3', 'S4');

3. SELECT SUPPLIER.SUPPLIER NAME
FROM SUPPLIER, SHIPMENTS
WHERE SUPPLIER.SUPPLIER NO# =

SHIPMENT.SUPPLIERNO#
AND SHIPMENT.PART_NO# = 'P2';

Which of the above queries is easiest to formulate?

The first query requires the user to understand the use of

nested selects. The second query requires the use of set

theory and explicit knowledge of suppliers who supply part

P2. The user may not have this knowledge. The third query

requires use of table joins and dot notation. In addition,

there are many more methods for formulating a query for

suppliers that supply part P2. The user must make many

decisions to formulate a SQL query. The user's choice will

depend on his background and preference.

2. Too Much is Expected From the User

Perhaps too much is expected from the user in query

formation. For the example queries, we have required

knowledge of the following:

1. Table joins on specific attribute conditions.

2. Dot notation used with joins of a relation.

3. Order of precedence of the query operators
(i.e., nested selects).

4. Syntax of the language. Terms and meanings.
(I.e., from, where, select, and not.)

5. Logical operations and meanings. Existential
quantifiers and negation.

27

wwv0ZY~ 1 zM66

3. Difficulties in TranslatinQ the Recruirement

The difficulties in understanding the syntax and

semantics are not the only problems the user will have in

formulating a query. Perhaps the greatest problem is the

translation of the query requirement from the domain of

plain English to set type constructs. The human mind does

easily translate a plain English requirement to set type

structures because the mind simply does not reason and think

in set type constructs. Humans tend to reason in both

simple and complex conditional statements that are analogous

to if then else type statements. Translating the require-

ment to set type syntax, that will obtain a range of answers

from specified domains, will not generally be trivial for

naive users.

4. Substantial Training Is Reguired

The user is required to learn and understand a

significant amount of information to access the database.

In summary, this approach is acceptable for sophisticated

users and computer professionals, but it will undoubtedly

present problems to naive users that lack formal backgrounds

in math and computer science. A substantial amount of

training is required to use these systems.

G. RELATIONAL QUERY LANGUAGES MUST BE IMPROVED

In Wong [Ref. 15:pp. 22-23], the following factors are

discussed and given as reasons for user difficulty in

28

learning, understanding and using the standard query

languages:

1. The user is forced to remember too many things. The
user is required to remember attribute names, atr-z
bute formats, record types and values. In addition,
the user must remember the meaning of certain reserve
words that will be used in query formulation.

2. Standard query languages support semantically poor
data models. Query languages that are based upon
solid mathematical principles such as tuple calculus
and relational algebra are difficult for non math
oriented users. A user that has not had formal ed-
ucation in calculus, logic, discreet mathematics
and set theory will not be able to understand the
finer points and implicit assumptions that exist
within the relational model.

3. There is no feedback during the query process.
Users generally do not formulate a correct query on
their first attempt. Logical mistakes with queries
can be very subtle and hidden to even sophisticated
and experienced users. A query language should have
features for building a complex query in a piece
meal, interactive fashion. Such features would make
the formulation of a difficult query, such as example
one, a much easier task. With feedback on partial
results, the completed query would be correct.

4. Lack of levels of detail in schemas. In a large data
base hundreds of attributes may be stored. It is very
difficult for the user to select relevant attributes
for a query when he must review a very large potential
set of attributes for query. There is no mechanism
available to control the amount of detail that is pre-
sented to the user during query formulation.

5. Lack of meta-data browsing facility. The user needs
a facility to browse the meta-data to obtain a general
overview of the database.

Friendlier query languages must be provided to the

user to access the database. Simplifying the syntax of the

query is important for extending the usability of the

relational model.

29

-' -- .- .-. , -. -. ,,.-, -- .',-,.<' ,. , - ; " , "

H. GEM AS AN EXTENSION OF THE RELATIONAL MODEL

The GEM semantic data model, Tsur (Ref. 12:p. 286], is

implemented on a dedicated backend and remedies semantic

scantiness by supporting features that the relational model

does not provide. Zaniola and Tsur describe their DBMS as

consisting of a user-friendly front-end supporting the GEM

semantic model and query language under the UNIX time-

sharing system. In addition, they utilize a dedicated back-

end processor to provide concurrency control, recovery and

support for all database transactions. A high level diagram

of the model is contained in Figure 1. GEM provides the

following extensions to the relational model:

1. Notions of entities with surrogates.

2. Aggregation and generalization are supported.

3. Null values and set valued attributes.

4. GEM has extended the basic QUEL language to handle
the new constructs.

1. Semantic Scantiness and User Friendliness

The system designers of this GEM implementation have

not only tried to remedy the semantic scantiness of the

basic relational model but also have attempted to provide a

friendlier query language for the user. They have capital-

ized on the good features of the relational model by

building GEM on top of the relational model and have

eliminated the relational limitations with the more powerful

GEM model. Furthermore, this system also improves recovery

and performance issues of the basic INGRES system.

03

2. Simplified Syntax of the GEM Implementation

However, the simplified syntax seems to fall short

of truly improving the difficulties associated with making a

relational query. This GEM extension to QUEL still seems to

be unsuitable for users with little computer science or math

background. The GEM queries have potentially simplified the

QUEL syntax by allowing the user to directly address non-

atomic data types in the query. Without this feature, at

least one additional table would be required for the query.

The length of the query would be increased because either

nested selects or table joins to indirectly address a non-

atomic data type would be required. But, even with this

abstract improvement, the same types of basic problems with

formulation of queries still exist. For example, consider

the following example query:

GEM -- > range of E is EMPLOYEE
retrieve (EMPLOYEE.NAME)
where EMPLOYEE.DEPARTMENT is
E.DEPARTMENT and E.NAME = "J.Black";

The user is required to be familiar with ranges,

attributes and conditions. These constructs can provide a

considerable challenge in formulating a complex query. The

user must understand the logical operations. Furthermore,

he must become proficient with tuple calculus to master the

GEM extension. It would seem that the goal of supplying a

user friendly interface to naive users is not accomplished.

The syntax is still basic QUEL syntax that allows the direct

expression of certain non-atomic data types. The GEM model

31

may be untenable for unsophisticated and inexperienced

users.

Many other semantic data models that have been

developed to extend the relational model have similar

strengths and failures of the GEM model. However, none of

the models that have been implemented with the first

approach, semantic extension with a simplified query

language, are both powerful and friendly. These models are

general.ly implemented with a conventional high-level

language (procedural) and accessed with a set oriented (non-

procedural language). These types of languages are not well

suited for providing powerful features and user friendly

interfaces to the relational model.

I. VALIDATION OF THE NEED FOR A BETTER INTERFACE

Systems that utilize standard query languages as an end

user interface are limited in both capability and potential

use. SEQUEL and QUEL are clearly not the best choices for

an end user interface to the database. However, these

standard query languages have potential to aid a higher

level interface to data that is stored in a relational

backend.

The graphics interface of GLA will add an additional

layer of higher level abstraction to the data base system.

It is possible to obtain more meaningful representations of

entities as database objects instead of tables of attribute

names and values. Finally, the expression of complex data

32

typer as sub-objects will provide a reallstic '.'.ec or tne

data base. The mutually supporting goals of suppl,,>ng Lctn

a friendly user interface and a powerrul se..ant:c exterscn

shall be realized with GLAD.

33

0 e A

III. OBJECT CRIENJT!M .. ,- AD A ,t s

Object oriented proqranmin rangqes, sqc!: .ai

SmallTalk-80 and ACTOR, offer an attractive aternAt,,e tc

the conventional approach o! developing a senant:c eata

model. A distinct advantage of the object oriented approact

is an object oriented programming language's intograti~cn of

active programming instructions with passivo data. In a

conventional, high level prcgra=-ing language, such a- C c r

pascal, data is separated from the control structures, and

operations are performed on the data by procedures and

functions. Since object oriented languages do not separate

the data and control structures, the data and instructions

are integrated into a self-contained unit called an object.

The objects themselves become active elements in program

execution because the code to do things such as sort,

divide, square root and print is actually part of the

object. An object has the capability to perform operations.

The _, ject performs an operation when it receives a message.

A program is executed by an obiect sending messages to other

objects. The operation is performed by the object utilizing

a method it contains or inherits from one of its ancestors.

Just as we inherit traits and characteristics from our

parents and ancestors, an object inherits methods from its

parents and ancestors. If a method is in an object's class

34

hierarchy or family, the object is able to utilize the

method. [Ref. 4:pp. 1-50]

Objec : .-.-- d a ages, sc. aL ACTOR, possess

powerful graphical capabilities. These graphical

capabilities can be used to present data to the user in a

manner that best represents a high level abstract view of

the individual data entities and the relationships that

exist between these entities. Pictorial objects can be

easily accessed and tailored for any specific database.

Basic graphics objects of the object oriented language are

general enough to be used for many different applications.

A. OBJECT ORIENTED REPRESENTATION OF THE DATABASE MODEL

Object oriented languages seem to be particularly well

suited for implementing database models. The use of objects

to represent real world information is clearly superior to

the conventional approach of data base modeling. The

conventional approach attempts to represent real world

entities as tables that contain tuples of data.

1. Database Obiects Modeled For Real World Entities

Real world entities, such as student, professor and

employee, have the ability to perform certain tasks.

Objects modeled to represent the real world student,

professor and employee can be given methods to perform

operations. These operations represent real world tasks.

For example, suppose the chairman of the computer science

department tells his secretary to sort all of her student

35

%. N % A' .*N .

files in ascending alphabetical order. The secretary

receives the instructions and sorts the student files by

utilizinn a simple method that she has developed in the

office. After she accomplishes the task, she informs the

chairman that she has finished sorting the student files.

2. Modeling the Objects

The database objects perform in a similar manner to

the real world entities that the objects represent. In

addition, the chairman could send the same message to many

different objects, and each of the objects could perform the

request in a different way. This is similar to the chairman

giving two secretaries the same instructions. Each of the

secretaries perform the instructions in a different way

according to the method that each of the secretaries has

learned or developed. This ability is a form of polymor-

phism, the property of having, assuming or passing through

various forms and stages. It is a powerful concept because

it closely parallels the way the human mind functions and

thinks. [Ref. 4:p. 33]

3. Objects That are Easy to Use and Learn

The object oriented model can be constructed for

ease of use and learning. The primary objective of this

approach is to eliminate user associated difficulties with

conventional query languages like QUEL and SQL. Users can

be given a data model that can be directly manipulated.

They shall be able to gather information and access data

36

0

with a minimum amount of difficulty. This approach will

make database usage available to a very wide audience.

[Ref. 1: pp. 1-11]

B. THE INTERFACE FOR ACCESSING DATABASE

GLAD shall be implemented with an object oriented

programming language called ACTOR. This language was

developed by the White-water Group, Incorporated. ACTOR

possesses powerful features that will be realized by using

the Microsoft Windows environment. The White Water Group

claims:

There are many benefits to this approach,...object
oriented programming makes it easier to develop, change,
and debug advanced programs. Actor is a complete pro-
gramming environment. It uses all the power of Micro-
soft Windows (MS-WINDOWS) to help you organize and
analyze your work. So you can see all of your work at
the same time and trace the influence of one part on
another as you make changes. This makes programming
in Actor a fluid, natural extension of the way you
think--entirely unlike conventional programming.
[Ref. 4:p. 25]

1. Easy to Use and Learn

Through implementation with ACTOR, GLAD will achieve

the important objective of being both easy to use and easy

to learn. GLAD will be a unique approach to utilizing

graphical information to represent real world entities.

With the Microsoft Windows programming environment, entire

objects will be as easily manipulated by the user as simple

atomic data types.

37

pL

2. Coherent Interaction Method

In addition, ACTOR will be utilized to provide GLAD

with a coherent interaction method for data manipulation and

program development. Although GLAD is not based on a

specific data model, it can be used to extend a specific

model's capabilities. It possesses tremendous potential for

improving a current relational system's capabilities and

providing the user with a friendly graphics interfaces.

Other visual models are based upon specific models and are

therefore limited in capability, portability and potential

use. GLAD combines the best features of higher level data

base abstractions from many of the other data models. In

addition, GLAD provides an efficient and effective means for

interacting with the database through data definition

interaction, data manipulation interaction and program

development interaction. ACTOR is the ideal language for

developing this type of interactive environment.

38

N0 M L 6

IV. THE QUERY WINDOW

The most important window interface to the user is the

query window. The query window is the most frequently

employed user interface for accessing information stored in

the database. A result window is automatically activated by

the query window to show the user the information that was

accessed and retrieved. Since the information is actually

retrieved from a relational backend, it is necessary to

understand the high level correspondence between the GLAD

window interface and the relational SQL query. Therefore,

the correlations between the major types of user windows to

SQL queries shall be shown. The window queries are based on

the sample relational queries that are contained in a

pedagogical database that was utilized in Date [Ref. 14:pp.

65-90]. Accordingly, the relational syntax for the DB2

system is standard SQL and will be utilized in conjunction

with the GLAD queries.

A. GLAD TO SQL

The GLAD window is able to eliminate most relational

type constructs from the user query. Essentially, a

translation from the GLAD object oriented query to the set

oriented SQL query must be accomplished. Before the transla-

tion algorithm is discussed, an in-depth examination of

39

• |

"V ~ \ ~ * **~ *:

W f ryJ P 4 V w n£,* . as - 5. 3 n : - i ' -
.

., . . .r ,-,, ,l' Y % V

possible user queries shall be conducted, and GLAD to SQL

query correlations will be reviewed.

1. Simple Queries

A few simple examples will be utilized to explain

the simple query. The simplest queries are of the following

SQL form:

- SELECT designated fields

- FROM a designated table

- WHERE a designated condition is met or true.

The GLAD query window is selected by the mouse and

opened for query on the display screen. Figure 2 shows the

basic GLAD query window.

[GLAD QUERY]

OBJNAME QUERY

OBJNAME

SUBOBJ

SUBOBJ

SUBOBJ

Figure 2. The GLAD General Form Query Window

After the query window is opened, instructions can

be typed next to the OBJNAME, * or SUBOBJ's. The window

items will be used in the following manner:

40

.. OBJNAME can be used for object instructions.

2. * can be used for aggregate operations and
formulation of nested selects.

3. SUBOBJ can be used for retrieval of attribute
values and forming conditions with relational
operators.

a. Simple Query with Condition

Consider the following query:

Get supplier numbers and status for suppliers in Paris.

The GLAD query window and corresponding SQL

query are shown below in Figure 3.

[GLAD QUERY]

SUPPLIER QUERY

SUPPLIER
[SQL QUERY]

_ > SELECT SUPPNO#, STATUS<1
S > FROM SUPPLIERS

STATUS P
CITY,'Paris, > WHERE CITY = 'Paris'

CITY-'Pi'

SNAME

Figure 3. Simple Query with Condition

With this simple query, it is easy to correlate

the GLAD query entries to the SQL query lines. The GLAD

query window for the SUPPLIER object was previously selected

41

INV

W WU~W~lWWUWUWUW WW Sb WV ~Eif15WV V ~ W WV WV"W 131 V V k %A _'V raw TWA r N *X .~.S~W'~WJ~

and can be correlated to the FROM line in the SQL query.

The SUPPLIER object is analogous to the SUPPLIERS table of

the relational data base. Therefore, the selection of the

SUPPLIERS query can automatically be substituted in the FROM

line of the SQL query. The '.P', next to the attributes or

sub-objects, SUPPNO# and STATUS respectively, designates

the SELECT line attributes. The user can think of '.P' as

being analogous to a print command. Essentially, the system

is instructed to print the sub-object values that satisfy

the query. Finally, the " = 'Paris' " specifies the

condition that must be met for the '.P' sub-objects to be

retrieved. The CITY sub-object must be equal to the string

value 'Paris'. Ultimately, attribute values for SUPPNO#

and STATUS will be retrieved from a tuple that has an

attribute value of 'Paris' for the city attribute.

b. Simple Query without Condition

A simple query may be formulated without a

qualification. Essentially, the system is instructed to

retrieve the specified sub-object or sub-objects from a

designated object. Consider the following example query:

Get the part numbers for all parts that are supplied.

The GLAD query window and corresponding SQL

query are shown below in Figure 4. The user must be aware

that every part number will be retrieved since no qualifica-

tion is used. In addition, redundant entries in the data-

base will not be eliminated with this type of retrieval.

42

.0 .

[GLAD QUERY]

SHIPMENT QUERY

SHIPMENT
[SQL QUERY]

> SELECT PART NO#SHIPNO# -
S> FROM SHIPMENT

PARTNO# P

QUANTITY

Figure 4. Simple Query without Condition

c. Retrieval with Duplicate Elimination

The above-mentioned problem can be eliminated by

directing the system to eliminate duplicate items. Consider

the following example query with duplicate elimination:

Get the part numbers for all parts supplied, with

redundant duplicates eliminated

The GLAD query window and corresponding SQL

query are shown below in Figure 5.

The redundant elements have been eliminated by

specifying that the '.P' operation be done in a DISTINCT

manner. Duplicate entries have been eliminated. But

additional syntax, that must be understood by the user has

been added to query. If eliminating the duplicates is

important to the user, the trade-off of adding syntax to

eliminate duplicates will be equitable.

43

[GLAD QUERY]

SHIPMENT QUERY I

SHIPMENT
[SQL QUERY]

>SELECT DISTINCT PARTNO#
SHIPNO# I

PARTNO# P DISTINCT
7 >FROM SHIPMENT

QUANTITY

Figure 5. Simple Query with Distinct Ordering

2. Retrieval Usincr Computed Values

Simple arithmetic operations can be performed on

selected sub-objects that have been designated for retriev-

al. GLAD shall allow addition, subtraction, multiplication

and division to be performed on queried sub-objects to

obtain certain types of numerical conversions. Conversions

from pounds to grams is an example of a numerical conversion

that can be accomplished.

a. Retrieval with Multiplication Operator

Retrieving a sub-object that is modified by an

arithmetic operation is a simple task. Consider the

following query that utilizes an addition operator:

*Get the weight in grams (stored in pounds) from PARTS that

* are located in Paris. The GLAD and SQL queries are listed

below in Figure 6.

p44

[GLAD QUERY]

PARTS QUERY
PARTS

[SQL QUERY]

COLOR SELECT WEIGHT*454<
C]

> FROM PARTS
WEIGHT .P * 454

> WHERE CITY =
CITY = 'Paris' 'Paris' ;

PNAME

Figure 6. Retrieval with Arithmetic Operation

This arithmetic operation is easily accomplished

by typing the arithmetic operator and operand immediately

after the '.P' retrieval designator.

b. Retrieval with Addition Operator

Retrieval with an addition operator is handled

the same way that the above multiplication operator is -

handled. The syntax is '.P + Number'.

c. Retrieval with Subtraction Operator

Retrieval with a subtraction operator is

analogous to the retrievals that have been discussed. The

user must take greater care in using the subtraction

operator because the range of numbers allowable for database
'

representation must be considered. The syntax is '.P- '4

Number'.

45 .

d. Retrieval with Division Operator

Retrieval with a division operator is similar to

the multiplication, addition and subtraction retrievals.

Again, the user must take care in using the division

operator not only because of the range of allowable numbers

but also because of gross potential error problems such as

division by zero. The syntax is '.P / Number', and Number

must be <> 0.

e. Use of Strings with Aggregate Operations

Additional flavor can be added to a query by

specifying a message to be returned with the query results.

It is possible to convert a weight that is stored in pounds

to grams and describe this conversion with the returned

results. Figure 7 shows how a message may be ordered. The

2 in front of the string, 'Weight in grams', indicates that

the string message will be mapped to the second item in the

SQL SELECT line.

It is anticipated that the results of the query

will be returned to the user in the GLAD results window.

Figure 8 shows a possible representation of these returned

results.

The query contained in Figure 8 represents one

way to use a message. Messages can be individually tailored

for specific queries. They do not have to be limited to use

with aggregate operations. In addition, messages can be

inserted anywhere in the SELECT line by explicitly

46

.,.r4 r-I IrIr 1 W46

i ruw ~ vu 1J 1Y

PARTS QUERY

PARTS 2 ',eight in grams'

COLOR

PNAME -P

CITY

WEIGHT P * 454

V V V
SELECT PNAME, 'Weight in grams', WEIGHT * 454

FROM PARTS <

Figure 7. Query with a Message

RESULTS

PNAME MESSAGE WEIGHT

wrench Weight in grams 720

bolt Weight in grams 567

Figure 8. Results with a Message

designated position of 2, 3 or any desired position. If

explicit ordering is not designated, the system translation

will default to position one.

47

' i

4
3. Print All Sub-Objects of an Object

A very desirable query feature is the ability to

print out all the sub-object attribute values contained in

an object with out explicitly selecting all sub-objects with

'.P' operations. This ability is analogous to the SQL query

where the entire table is copied.

Consider the following query:

List all the sub-object values of the SUPPLIER object.

The GLAD query and corresponding SQL query are

listed below in Figure 9.

[GLAD QUERY]

4

SUPPLIER QUERY

SUPPLIER
[SQL QUERY]

* .

L-> SELECT *
SUPPNO#

L- > FROM SUPPLIER
STATUS

CITY

NAME

Figure 9. Copy the Entire Table

The '*' is use" to represent the retrieval of all

sub-objects in the designated GLAD objects. The '*' in

GLAD is directly correlated to the 'SELECT *' in SQL which

directs the system to produce an entire copy of the table.

48

V %

Using the '* for retrieval is a shorthand method of copying

the entire table by explicitly doing a '.P' operation on

every sub-object.

4. Qualified Retrieval With More Than One Condition

The user may place further restrictions or qualifi-

cations on a GLAD object by using relational operators on

more than one sub-object in the query. Consider our first

query, but, with an additional restriction that the status

must be greater than 20. The first query is modified as

follows:

Get the supplier numbers for suppliers in Paris that
have a supply status greater than twenty.

The GLAD query and corresponding SQL query show the

correlation of the GLAD query to the SQL constructs. The

second condition is simply represented by 'AND' which is

used to form the conjunction of the conditional statements.

The query in Figure 10 has more than one condition to

illustrate the ability of GLAD to form conjunctiuns with

multiple conditions.

The only difference between this retrieval and the

*l simple retrieval is the mapping of successive conditions to

'AND' for conjunction with other SQL statements.

5. Retrieval with Ordering

The user may wish to guarantee that the retrieved

information be returned in either descending or ascending

order. This ordering can be explicitly specified in the

query. Generally, the retrieved information is not

49

[GLAD QUERY)

SUPPLIER QUERY

SUPPLIER
[SQL QUERY]

--O SELECT SUPPNO#

SUSN "> 20 > FROM SUPPLIER

> WHERE STATUS > 20;
CITY 'Paris'> AND CITY - 'Paris;

NAME

Figure 10. Retrieval with Conjunction of Conditions

guaranteed to be in any particular order. Order in either

ASC (ascending order) or DESC (descending order) can be

specified.

Consider the following query requirement:

Get the supplier numbers and status for suppliers in
Paris, in descending order of status.

The GLAD query window and corresponding SQL query

are shown in Figure 11.

The compact GLAD query must be translated to the

more complicated SQL query. The '.P' and 'DESC' operation

on the status attribute must be translated from the GLAD

query to both the SELECT and ORDER lines in the SQL query.

50

(GLAD QUERY1

SUPPLIER QUERY

SUPPLIER

[SQL QUERY]

> SELECT STATUS
SUPPNO# F > FROM SUPPLIER

STATUS .P DESC
> WHERE CITY = 'Paris'

CITY 'Paris'> ORDER BY STATUS DESC
SNAME

Figure 11. Retrieval in Descending Order of Status

6. Retrieval Using Between

GLAD will allow the use of retrieval with BETWEEN so

that a user may specify an explicit range of values for

retrieval of the designated sub-object. Consider the

following query requirement:

Get the parts whose weight is in the range 16 to 19.

In addition to the above query, consider this query

requirement:

Get the parts whose weight is not in the range 16 to 19.

The first query retrieves all parts whose weight is

greater than or equal to 16 or less than or equal to 19.

The second query is the contradiction of the first and

retrieves value- less than 16 and greater than 19.

51

The GLAD and SQL queries are listed below in Figure

12.

[GLAD QUERY]

PARTS QUERY

PARTS

COLOR P

WEIGHT .P BETWEEN 16 & 19 2

CITY

PNAME P

PARTNO# P

V V V V
SELECT PARTNO#, PNAME, COLOR, WEIGHT

[SQL QUERY] FROM PARTS <

WHERE WEIGHT BETWEEN 16 AND 19;

Figure 12. Using a Range of Weight Values

The negation of the above query is accomplished

simply by changing the last line to the following:

WHERE WEIGHT NOT BETWEEN 16 AND 19

7. Retrieval Using IN

GLAD queries to determine if a sub-object value is

an element of a user specified set of values can be stated.

5

The definition of the set is dependent on the user query.

This query can also be thought of as a shorthand method for

a predicate involving a sequence of individual comparisons

that are ORed together. [Ref. 14:p. 50]

We shall not encouraae the user to utilize the O.

expression when formulating GLAD queries. The OR expression

can lead to subtle logic errors. For example, consider the

following type of query referred to in the above referenced

literature:

SELECT PARTNO#, PNAME, COLOR, WEIGHT
FROM P
WHERE WEIGHT = 12
OR WEIGHT = 16
OR WEIGHT = 17;

Although we can explicitly allow a GLAD query to

translate to this SQL format, the same results will be

obtained through use of the below listed query shown in

Figure 13.

The above GLAD query translates very efficiently to

SQL. The syntax used in the GLAD query utilizes the

familiar set type notation, { memberl, member2, member3,

...), introduced to most people in elementary school. This

type of a query is an effective and efficient method of

obtaining a specific result from a group of alternatives

that are members of a user defined set.

53

[GLAD QUERY]

PARTS QUERY

PARTS

COLOR "P

WEIGHT .P IN {12, 16, 17}

CITY

PNAME P

PARTNO# "P-

V V V V
SELECT PARTNO#, PNAME, COLOR, WEIGHT

[SQL QUERY] FROM PARTS <

WHERE WEIGHT IN (12, 16, 17); <

Figure 13. Retrieval Using a Set of Weight Values

8. Explicit Use of OR for Ouerv

If the user determines that he wants to explicitly

formulate a query with OR disjunctions, he can format his

query in the following manner shown in Figure 14.

Essentially, the default conditions for GLAD specify

* that all conditional statements should be made into a

conjunctive query. In order to utilize 'OR', the user must

explicitly designate the use of 'OR' to prevent the transla-

tion from defaulting to 'AND'.

- 54

U.

[GLAD QUERY]

PARTS QUERY

PARTS

COLOR .P
!I I

WEIGHT .P =12 OR =16 OR =17

CITY

PNAME P

PARTNO# P

V V V V
SELECT PARTNO#, PNAME, COLOR, WEIGHT

[SQL QUERY] FROM PARTS <

WHERE WEIGHT = 12 <

OR WEIGHT = 16 <

OR WEIGHT = 17 <

Figure 14. Retrieval Using a Set of Weight Values

9. Use of OR to Form a Disjunction of Attributes

A GLAD query can also be formed on the disjunction

of two distinct attributes. Consider the query that was

previously shown in Figure 10. Shown below is the disjunc-

*tion, vice conjunction, of the attributes.

' 55

[GLAD QUERY]

SUPPLIER QUERY

SUPPLIER
[SQL QUERY]

SUPPNO# P> SELECT SUPPNO#

> FROM SUPPLIER

STATUS > 20> WHERE STATUS > 20;

CITY OR ='Paris'-
> OR CITY = 'Paris;

NAME

Figure 15. Disjunction of Attributes

10. Retrieval Using a Character or String Sequence

The user may utilize a character or string sequence

to specify a retrieval. Consider the following query

requirement:

Get all parts who's names begin with the letter c.

Therefore, every part name that begins with a letter

c should be retrieved by this query. The length of the

string or value of any subsequent characters in the string

are irrelevant to the retrieval instructions.

The query displayed in Figure 16 will retrieve all

the sub-object values that are contained within the PNAME

that has C as the first character of the PNAME. The PNAME

object is mapped to the relational PNAME attribute for

retrieval, and the instructions on this sub-object are

56

*.'"' ,' ?' /- '';"'" " f% :: & - • -

PARTS QUERY

PARTS

COLOR .P

WEIGHT .P -

CITY

PNAME .P HAS 'C*'

PARTNO # • P

V V V V
SELECT PARTNO#, PNAME, COLOR, WEIGHT

[SQL QUERY] FROM PARTS <

WHERE PNAME LIKE 'C%';<

Figure 16. Retrieval Using a Search String

translated to the 'SELECT PNAME' and 'WHERE PNAME LIKE C%'

portions of the SQL query.

A GLAD query can be formulated for an embedded

character string in the following manner as shown in Figure

17. I

This query will retrieve all the sub-object values

designated for retrieval by the .P operation whose PNAME

value has a 'cre' embedded in it. For example, the string

'screw' would satisfy the query condition.

57

I'

;Ji lzz t ,A

[GLAD QUERY]

PARTS QUERY

PARTS

COLOR P

WEIGHT "P - i

CITY

PNAME .P HAS '*cre*'PARTNO# "P'

V V V V
SELECT PARTNO#, PNAME, COLOR, WEIGHT

[SQL QUERY] FROM PARTS <

WHERE PNAME LIKE '%cre%';<

Figure 17. Retrieval with Embedded Sting

11. Ouery with More than One Oblect

A powerful feature of GLAD is the ability to utilize

more than one object for a query. The user can easily

accomplish this task by opening more than one GLAD query

window. The user may open a query window for every object

in the database. Depending on how the query is formulated,

the GLAD query will either translate to a SQL join or nested

SELECT query.

N
58

N VN .

-0- r

<< ;. . .,

12. More than One Object--Ecruiioin

We can retrieve all sub-objects of two tables by

opening two quer,%v windews as shown in Figure 18.

SUPPLIER QUERY

[GLAD QUERY]
* [WINDOW 1J

SUPPNO#

STATUS

CITY = PARTS.CITY

SNAME

-> SELECT SUPPLIER.*, PARTS.* <

> FROM I->SUPPLIER, PARTS<

WHERE SUPPLIER.CITY = PARTS.CITY;<-

'PARTS QUERY [SQL QUERY]

PARTS .P

* [GLAD QUERY]
(WINDOW 2]

COLOR

WEIGHT

CITY

PNAME

Figure 18. Retrieval with Equijoin

59

.... %

13. Multiple Objects with Multiple Conditions

When more than one object query window is opened,

any number of qualifying conditions may be specified for the

GLAD query. The first qualifier is mapped to the WHERE line

and subsequent conditions are mapped to the AND line of the

translated SQL query. Any ambiguity with sub-object names,

such as CITY in both the PARTS and SUPPLIERS objects, is

resolved by translating the GLAD query with explicit

specification of object name to table name. A '.' will

divide the object from the attribute, and the sub-object

name will be translated to the attribute name. Figure 19

contains and example of this type of query.

14. Retrieval of Specified Fields from a Join

Specific fields can be retrieved from a multiple

object query with the '.P' operations. Any number of sub-

object fields may be retrieved in this manner. If ambiguity

exists with sub-object names, the system will resolve the

ambiguity by using the entire object name with dot notation

for the translated SQL.

15. Copy Sub-Objects From Separate Tables

A copy of all sub-objects that meet specified condi-

tions can be obtained in an efficient manner. With multiple

query windows, all sub-object tuples that meet the specified

conditions can be retrieved by using the shorthand notation,

'.P' on the '*' for sub-object. Consider the query in

Figure 19. The result window shall obtain all sub-objects

60

,S

SUPPLIER QUERY

SUPPLIER

*.p

SUPPNO#

STATUS <> 20

CITY > PARTS.CITY

SNAME

L> SELECT SUPPLIER.*, PARTS.* <

> FROM L>SUPPLIER, PARTS<1

WHERE SUPPLIER.CITY > PARTS.CITY;<-

AND SUPPLIER.STATUS <> 20

PARTS QUERY

PARTS

* .P-

COLOR

WEIGHT

CITY

PNAME

Figure 19. Copy Joined Tables on Conditions

from both tables that have (SUPPLIER.STATUS <> 20) and

(SUPPLIER.CITY > PARTS.CITY). Therefore, the STATUS can

66
I6

a. ~* *U S~' ~ , ~ ~ *F~'

S be anything but 20, and SUPPLIER.CITY must alphabetically

follow the PARTS.CITY.

-6. Querv With T'h-e Object

As stated previously, a GLAD query is not limited to

any specific number of tables. For example, three GLAD

query object windows can be utilized to make a query. An

example using three QUERY windows is contained in Figure 20.

SUPPLIERS QUERY SHIPMENT QUERY

SUPPLIERS SHIPMENT

SUPP NO# SHIP NO#
STATUS PART NO# = 'P5'-
CITY P QUANTITY
SNAME

SELECT SUPPLIER.CITY, PARTS.CITY <

> FROM SUPPLIER, PARTS, SHIPMENT

WHERE SUPPLIER.CITY = PARTS.CITY <

AND PART NO# = 'P5';<

PARTS QUERY

PARTS

COLOR
WEIGHT [
CITY .P = PARTS.CITY
PNAME

Figure 20. Three Object GLAD Query

62

0'

The query contained in Figure 20 has been condensed

to allow the three object windows and the correspondence to

the SQL constructs on the same page.

17. More Than One Object--Nested Select

GLAD is not entirely limited to translating a

multiple object query to a SQL query that joins tables. As

mentioned earlier, the GLAD query may be translatcd to a SQL

query that uses nested selects. Consider a query that was

previously handled by simple joins. The query that gets the

supplier names for suppliers who supply part 'P2' can also

be obtained through the use of the existential quantifier.

Consider the query contained in Figure 21. This query, that

makes use of the existential quantifier, was originally

expressed in the following manner:

Get the supplier names for suppliers who supply
part 'P2'.

a. GLAD'S Use of the Existential ouantifier

The GLAD query that utilizes nested selects is

expressed as follows in plain English:

Retrieve supplier names for suppliers such that there does

exist a shipment relating them to part 'P2'.

b. The Negation of the Nested Query

In addition, the contradiction of the above men-

tioned GLAD query can easily be obtained by utilizing '.NOT

EXISTS' as an operation on the '*' sub-object.

63

0I

SUPPLIER QUERY

SUPPLIERS

SUPP NO# [GLAD QUERY]
[WINDOW 1]

STATUS

CITY

SNAMEP
[SQL QUERY]

> SELECT SNAME

> FROM SUPPLIER

> WHERE EXISTS I
[GLAD QUERY2]

____ ____ - (SELECT *<
SHIPMENT QUERY Z L>FROM

SHIPMENT
>WHERE SHIPNO#

* .EXISTS SUPPLIER.SUPPNO#

SHIPNO# = SUPPLIER.SUPPNO# >AND PARTNO#
I'P2');

PARTNO#
= 'P2'

[GLAD QUERY]
QUANTITY [WINDOW 2]

Figure 21. Query Illustrating Nested Selects

c. The Use of '*' for Translation

Finally, it must be mentioned that the 1*1 sub-

object is displayed for every object. It is not a real sub-

object that wolild be contained as a database object. The

'*' is a special designator or pseudo object that is used

6

for the sole purpose of translating a GLAD query to a nested

select SQL query or retrieval of all sub-objects of a

database object.

18. Retrieval With Agregate Operations

Aggregate operations can be utilized with '.P'

operations on sub-objects or independently on the entire

object to retrieve a numerical answer that is not directly

stored in the database. The query utilizes the aggregate

operation to calculate the retrieved result. For example,

consider the below listed queries:

1. Get the total number of suppliers supplying parts.

2. Get the number of shipments for part 'P2'.

3. Get the total quantity of part 'P2' supplied.

All of these queries use aggregate operations to

calculate the retrieved results of the query.

a. GLAD QUERY--Total Number of Suppliers

Figure 22 contains a GLAD query that utilizes

two aggregate operations to retrieve the number of suppliers

that are currently supplying parts.

b. Retrieve the Number of Shipments for 'P2'

Aggregate Operations provide the power and

flexibility to the user to obtain computed results that are

not directly stored in the data base. A COUNT operation

performed on the '*' in the query window will allow the user

to formulate an efficient query to retrieve the total number

of tuples that meet a designated condition.

65

[(LAD QUERY]

SHIPMENT
SH IPMENT

SHIPNO# COUNT DISTINCT

PARTNO#

QUANTITY

SELECT COUNT(DISTINCT SHIP_NO#)<

> FROM SHIPMENTS

Figure 22. GLAD Query with Distinct Count

Consider a GLAD query that utilizes a simple

aggregate operation to calculate the number of shipments for

part 'P2'. The query is listed in Figure 23.

This query will simply count up all the

shipments in the database that has 'P2' for a shipment

number in the database.

c. The Total Quantity of 'P2' Supplied

Aggregate operations can be used in conjunction

with '.P' operations on designated sub-objects to compute

specific computed values of these sub-objects. Consider the

query in Figure 24 that utilizes the SUM function to

calculate the total quantity of the part 'P2' that is

supplied.

66

[GLAD QUERY]

SHIPMENT QUERY

SHIPMENT [SQL QUERY]

* COUNT --- > SELECT COUNT(*)

SHIPNO# FROM SHIPMENT

PART NO# 'P2' > WHERE PARTNO# =
'P2';

QUANTITYVl

Figure 23. Using COUNT on Object Name

[GLAD QUERY] 1,

SHIPMENT QUERY

SHIPMENT [SQL QUERY]

*--> SELECT SUM(QUANTITY)

SHIPNO# FROM SHIPMENT

PART NO# = 'P2' > WHERE PART NO# =
'P2';"

QUANTITY P SUM

Figure 24. GLAD Query that Computes SUM of QUANTITY 0

In a similar manner, queries can be formulated

with the following aggregate operations:

60

671

0

. MAX will calculate the largest value of a sub-object

2. MIN will calculate the smallest value of a sub-object. A

3. AVG will calculate the average value of a sub-object.

19. GROUP BY to Conceptually Rearrange the Data

GLAD shall employ the GROUP operator to conceptually

rearrange the translated table and retrieve partitions so

that within one group all rows have the same value for the

GROUP field.

Consider the following query:

For each part supplied, get the part number and the
total quantity supplied of that part, excluding ship-
ments from supplier 'Dl'.

A GLAD query shall make use of the GROUP function to

accomplish the query. Consider the following GLAD query and

the corresponding SQL query translation in Figure 25.

B. GLAD QUERY OBJECTS THAT REFER TO OTHER QUERY OBJECTS

The previously discussed queries showed GLAD objects

composed entirely of simple sub-objects that hold atomic

data. As mentioned earlier, one of the most powerful

features of GLAD is the ability to represent complex non-

atomic data as simple atomic data. However, queries must be

translated in a two phase process to accomplish this type of

representation. First, the query must be translated to

extended SQL syntax. Second, non-atomic data types must be

translated to primitive SQL syntax for the final SQL query.

Figure 26 illustrates the results of this process.

68

SJ

(GLAD QUERY]

SHIPMENT QUERY

SHIPMENT

SHIPNO# <> 'S1'- !-
PARTNO# P GROUP<

QUANTITY - .P SUM

,> ['q SQLQUERY]

> SELECT SUM(QTY), PARTNO <-

> FROM SHIPMENT

WHERE SHIPNO# <> 'SI' <

> GROUP BY PARTNO#;

Figure 25. GLAD Query Using GROUP BY

The query in Figure 26 shows what happens when a query

has a sub-object that refers to another object. In this

case, the sub-object CITY is a non-atomic sub-object of type

TOWN. The TOWN object consists of NAME, LOCATED and

:4 POPULATION. The TOWN sub-objects are atomic sub-objects of

type integer and character.

1. Retrieval of a Non-Atomic Object

The query requires the retrieval of the

SUPPLIER.CITY sub-object. Since CITY refers to another

object, TOWN, all the attribute values of instances of TOWN

69 j
4'

; 1.~.

VRL 10'~w ~ ~~f~ .p - p w - -up.

SUPPLIERS QUERY SHIPMENT QUERY

* SUPPLIERS SHIPMENT

SUPP NO# SHIP NO# = 1011

STATUS PART NO4 'P5'-,

CITY P QUAITY
SNAME

SELECT SUPPLIER.CITY

> FROM SUPPLIER, SHIPMENT

WHERE SHIPNO# = 1011

AND PARTNO# = 'P5';<

IDTOWN <

TID TIDNAME

TOWN <

TID NAME LOCATED POPULATION

L> SELECT TOWN.NAME, LOCATED, POPULATION

FROM SUPPLIER, SHIPMENT, IDTOWN, TOWN

> WHERE SHIPNO# = 1011

> AND PARTNO# = 'P5';

Figure 26. Query with Objects that Refers to an Object

that satisfy the query must be retrieved. Therefore, CITY

is retrieved by translating the CITY sub-object to a TID

(TOWN Identifer) attribute. TID is used to join the

SUPPLIER and TOWN tables. SUPPLIER is joined to the IDTOWN

table. The object TOWN, which is referred to by the CITY

70

sub-object, is translated to the TOWN table and joined to

the IDTOWN table. Ultimately, to retrieve the CITY sub-

object that meets the query conditions, SUPPLIER must be

joined to both the IDTOWN table and TOWN table. All of the

attributes in the TOWN table shall be listed in the SELECT

line. In other words, every tuple that satisfies the query

conditions will be selected.

2. Use of Complex Objects to Specify Query Conditions

Consider the query previously presented in Figure 1.

The query translation will change significantly if CITY is a

complex sub-object. Consider Figure 27 with CITY as non-

atomic data of type TOWN. Relational operators can be used

on CITY to specify query conditions by using an identifer

table that refers to the TOWN table with the complex CITY

object.

In Figure 27, a query with the string value 'Paris'

is used to specify a condition for the retrieval. However,

CITY is of type TOWN and not type string. To avoid

generating an error resulting from SQL's inability to

utilize complex data, the line CITY = 'Paris' is translated

to TIDNAME = 'Paris', and the SUPPLIER table is joined to an

identifer table. The identifer table (IDTOWN) maintains

string information that is not stored directly in the

SUPPLIER table. The SUPPLIER and IDTOWN are actually joined

on an integer value that is stored as an identifer in these

71

* p..- .~.~ *p~ P ~ *2. %

[GLAD QUERY]

SUPPLIER QUERY
SUPPLIER

[SQL QUERY]

SEL ECT SUPP NO , STAUS1-
SUPPNO# .P

.pJ FROM SUPPLIER
STATUSP-

CITY ,Paris > WHERE CITY = 'Paris';

SNAME

IDTOWN

TID TIDNAME

SELECT SUPPNO#, STATUS <

FROM SUPPLIER, IDTOWN <

WHERE TIDNAME = 'Paris';<

Figure 27. Non-Atomic Sub-Object with a Condition

tables. This integer, referred to as TID, is used as a

surrogate value to join these tables. Since the complex

sub-object is not designated for retrieval, it will not have

to be joined with the TOWN table. Most conditions that

utilize relational operators on complex sub-objects will be

performed on the information that is held in the identifier

table. For example, CITY = 'Paris' will be translated into

TIDNAME = 'Paris'. The operation is actually performed on

the string value 'Paris'. Therefore, unless a retrieval is

72

specified on the complex sub-object, it will be unnecessary

to join all three tables like the query in Figure 26.

C. GLAD'S CORRESPONDENCE TO SQL

The GLAD queries atterict " i iminate much of the

difficulty associated with SQL queries. The GLAD queries

remove much of the formuinn-itn of the relational synta::

associated with SELECT, FROM, WHERE, AND and GROUP BY.

Multiple objects can be used in a query by opening a query

window for each object. These query windows will be trans-

lated to either a SQL join or nested select query.

Because GLAD will be built on an underlying relational

model, the GLAD query windows have been developed by working

backward from DB2 SQL to GLAD windows to ensure the best

possible correlation. Therefore, the object oriented GLAD

interface corresponds well to the SQL query language of an

underlying relational system. In most cases, the GLAD query

elements form a perfect one-to-one mapping to the relational

backend. Therefore, at a higher, conceptual level, GLAD

queries have the potential for effective and efficient

transfer and translation to the relational system.

Translating the data structures of the object oriented

interface to a relational format requires easily accessible

data structures and effective translation algorithms.

73

IF

V. SYNTAX FOR THE GLAD SCHEMA

In the previous chapter, the graphical query windows to

formulate a GLAD database query were discussed at the

database user level. In this chapter, the higher level

schema for defining objects that will support the window

interfaces of the previous chapter shall be discussed in

detail. The schema presented for GLAD in Wu [Ref. 16:pp. 1-

10] shall be examined in detail and used with the University

Database example presented in Wu [Ref. l:pp. 1-10] to

illustrate the schema definition of a GLAD database. Figure

28 contains the syntax for the schema, defined in Wu [Ref.

l:p. 3], for GLAD.

Each of the database items of Figure 28 shall be used to

examine the schema for the database objects of the pedagogi-

cal UNIVERSITY database. The user interface shall provide a

view of the database as graphics objects.

A. A VIEW OF THE UNIVERSITY DATABASE

Consider the high level view of the UNIVERSITY database

that will be presented to the user from Wu [Ref. l:pp. I-

10]. The UNIVERSITY database's major database objects are

shown in Figure 29.

The schema definition for each of the above specific

database objects shall be analyzed in detail.

74

Syntax For Schema Definition

<db-schema> ::= <object-declaration> <object-declaration>

<object-declaration> ::= +
DEFOBJ <object-name> <attribute-declaration> ENDOBJ

<attribute-declaration> ::= <attribute-name> : <type>;

<type> ::= <member-type> <or-list> I SETOF <member-type>

<member-type> ::= <system-object> <object-name>

<or-list> ::= OR <member-type> I OR SETOF <member-type>

<system-object> STRING [<size>] I NUMBER

<size> ::= 1 1 2 I 3 I -.. I maxint /* whole number */

<object-name> ::= /* string, uppercase */

<attribute-name> ::= /* string, uppercase */

Figure 28. GLAD Schema

STUDENT COMMITTEE

DEPT EMPLOYEE

Figure 29. User View of University DB

75

I 0 W-
- -

1. The STUDENT Object Schema

The schema for the STUDENT object shall follow the

GLAD schema -1initi n zrvention. For 1e sa-:e 3f c a .

and space, tne ftaaase definitions will be shown na

vertical manner. The STUDENT object is a complex database

object that has both atomic and non-atomic attributes as

sub-objects. The GLAD representation of the complex attri-

bute MAJOR allow- all of the attributes to be uniformly

defined by the GLAD schema definition. Figure 30 represents

the schema for the STUDENT OBJECT in GLAD, extended SQL and

SQL syntax.

GENERAL OBJECT DEFINITION
<object-declaration> ::= DEFOBJ <object-name>

<attribute-declaration>+
ENDOBJ

SPECIFIC STUDENT DEFINITION
Student ::= DEFOBJ STUDENT

NAME: string;
AGE: integer;
GPA: integer;
MAJOR: DEPT;

ENDOBJ

GENERALIZED ESOL & SQL DEFINITION

<table> ::= <table-name> <attribute-declaration>+

SPECIFIC ESOL STUDENT DEFINITION
STUDENTTABLE ::= STUDENT (NAME:string, AGE:integer,

GPA:integer, MAJOR:DEPT)

SPECIFIC SQL STUDENT DEFINITION

STUDENTTABLE ::= STUDENT (NAME:string, AGE:integer,
GPA:integer, DID:integer, SID:integer) &

IDDEPTTABLE ::= IDDEPT (DID:integer, DIDNAME:strLng)

Figure 30. The STUDENT Object Schema

76

-0

The schema for the STUDENT object is both easy to

construct and effectively corresponds to the extended

relational type schema. This extended SZL type zchema 's

similar to the schema that was defined for the GEM extensL:r

of a relational model in Tsur [R,'f. 12:pp. 1 - 8]. Since

the extended SQL STUDENT table contains complex data types

it is unsuitable for use as a relational query. It must be

joined with an identifier table that holds a string of

characters. The character string is equivalent to the name

of the complex data type.

An effective correspondence between schemas shall

prove to be fruitful for minimizing the translation scheme.

However, we shall defer the discussion of the translation

scheme and algorithms to accomplish the translation to the

subsequent chapters. S

Of particular importance is the treatment of the

MAJOR attribute in the STUDENT sub-schema. The higher level

representation of the MAJOR sub-object, which is not atomic

but is represented to the user like any other atomic type,

is one of the most important features of GLAD. This feature

ultimately allows the user to view everything in the

database as real world entities that correspond to database

objects. The disadvantage is design difficulties and

challenges associated with the implementation and transla-

tion of this data to primitive SQL.

77

% %

The ESQL to GLAD translator can substitute an atomic

ESQL attribute directly for a corresponding SQL attribute in

the translated SQL query. For the non-atomic attributes,

this process requires a complicated translation vice an easy

substitution for atomic attributes. The translator must

analyze every line of the extended query and determine if

any attributes in the line are not atomic. The translator

will consult a table that contains all non-atomic attri-

butes. If an attribute is non-atomic, the translator will

call procedures that will form joins on surrogate identifier

tables to express the complex data in primitive SQL con-

structs.

2. The DEPT Object Schema

The DEPT object is related to every object in the

UNIVERSITY database. The Schema for DEPT, shown in Figure

31, contains both complex and atomic data attributes.

The CHAIR object is a complex object of type

FACULTY. The FACULTY object is a specialized instance of

the EMPLOYEE object. NAME is a simple string type that

contains the name of the university department. TENURED is

a complex type of sub-object of type TPROF, and TPROF is a

type of set that contains all the tenured PROFS in the

UNIVERSITY database. Therefore, identifier tables will be

needed for the TENURED and CHAIR sub-objects to formulate

the primitive SQL query. In conclusion, the DEPT type of

object is the center piece of the UNIVERSITY database.

78

0

GENERAL OBJECT DEFINITION
<object-declaration> ::= DEFOBJ <object-name>

<attribute-declaration>+

ENDOBJ

SPECIFIC DEPT DEFINITION
Dept ::= DEFOBJ DEPT

CHAIR: FACULTY;
NAME: string;
TENURED: TPROF;

ENDOBJ

GENERALIZED ESOL & SQL DEFINITION
<table> ::= <table-name> <attribute-declaration>+

SPECIFIC ESOL DEPT DEFINITION
DEPTTABLE ::= DEPT (CHAIR: FACULTY, NAME: string,

TENURED: TPROF)

SPECIFIC SQL DEPT DEFINITION

DEPTTABLE ::= DEPT (FID:integer, NAME:string,
TID:integer, DID:integer) &

IDFACULTYTABLE ::= IDFACULTY (FID:integer,
FIDNAME:string) &

IDTPROFTABLE ::= IDTPROF (TID:integer,
TIDNAME:string)

Figure 31. The DEPT Object Schema

Every object of the database is related to the DEPT object.

GLAD interfaces have the unique capability of treating

complex data types like atomic data types. This unique GLAD

capability will be used to provide the user the best

possible data definition, data access and data manipulation

capabilities.

3. The EMPLOYEE Object Schema

The EMPLOYEE Object is a generalized object that

includes FACULTY and SECRETARY specialized objects. The

79

,p

N

Schema for the generalized EMPLOYEE object is shown in

Figure 32.

GENERAL OBJECT DEFINITION
<object-declaration> ::= DEFOBJ <object-name>

<attribute-declaration>
+

ENDOBJ

SPECIFIC EMPLOYEE DEFINITION
Employee ::= DEFOBJ EMPLOYEE

NAME: string;
PAY; real;
DEPARTMENT: DEPT;
JOBTYPE; CATEGORY;

ENDOBJ

GENERALIZED ESOL & SQL DEFINITION
<table> ::= <table-name> <attribute-declaration>+

SPECIFIC ESOL EMPLOYEE DEFINITION
EMPLOYEETABLE ::= EMPLOYEE (NAME:string, PAY:real,

JOBTYPE:CATEGORY, DEPARTMENT:DEPT)

SPECIFIC SQL EMPLOYEE DEFINITION
EMPLOYEETABLE ::= EMPLOYEE (NAME:string, PAY:real,

CTID:integer, DID:integer, EID:integer) &
IDCATEGORYTABLE ::= IDCATEGORY (CTID:integer,

CTIDNAME:string) &
IDDEPTTABLE ::= IDDEPT (DID:integer,

DIDNAME: string)

Figure 32. The EMPLOYEE Object Schema

The EMPLOYEE object contains both complex and atomic

data objects. NAME is the name of the specific EMPLOYEE.

The PAY attribute is of type real to allow the decimal

, representation of the EMPLOYEE salary. DEPARTMENT is of

type DEPT and is analogous to the MAJOR attribute of the

STUDENT object. However, the user is presented with

distinct conceptual representations of both of these

80
4.

attributes. The system must translate distinct sub-objects

of the same complex type and correlate these sub-objects to

relational attributes for translation. At the schema level,

the translation process is accomplished with identifier

tables for complex objects.

4. The COMMITTEE Oblect Schema

The COMMITTEE Object is a complex object that has

both atomic and complex data objects. In addition, COWIT- -

TEE is associated to the EMPLOYEE object through the MEMBERS

sub-object. Figure 33 shows the en .±re COMMITTEE schema and

the COMMITTEE to EMPLOYEE association.

GENERAL COMMITTEE DEFINITION
<object-declaration> ::= DEFOBJ <object-name>

<attribute-declaration>+
ENDOBJ

SPECIFIC COMMITTEE OBJECT
Committee ::= DEFOBJ COMMITTEE

NAME: string;
MEMBERS: FACULTY;
PURPOSE: string;

ENDOBJ

GENERALIZED ESOL & SQL DEFINITION
<table> ::= <table-name> <attribute-declaration>+

SPECIFIC ESOL COMMITTEE DEFINITION
COMMITTEETABLE ::= COMMITTEE (NAME:string,

MEMBERS:FACULTY, PURPOSE:string);

SPECIFIC SQL COMMITTEE DEFINITION

COMMITTEETABLE ::= COMMITTEE (NAME:string,
FID:integer, PURPOSE:string) &

IDFACULTYTABLE ::= IDFACULTY (FID:integer,
FIDNAME:string, CMID:string)

Figure 33. The COMMITTEE Object Schema

81

i :, ; , 7- . -' . . . " . \f d. V',-i . W.0. L

B. SCHEMA CONSIDERATIONS

An easily understandable and usable schema is important

for both the designer and user of the database. The

previous discussion illustrated the syntax for schema

definition of the GLAD UNIVERSITY database. This higher

level approach to database is well suited to naive or

inexperienced users. The burden of implementing the complex

sub-object types is placed entirely on the implementors of

GLAD. The higher level object oriented approach to implemen-

ting the schema may be well suited for the user but presents

unique challenges to the designer.

Unique design challenges await the database designer.

The GLAD schema must be implemented at the physical level

with effective data structures that will adequately support

the user interfaces.

82

VI. DATA STRUCTURES TO SUPPORT THE INTERFACES

Efficient and effective data structures must be

developed and employed for supporting the window interfaces

to the GLAD user. GLAD's data structures maintain the

information that is supplied to the GLAD window interfaces

and displayed to the user. Object oriented data structures

are particularly well suited for the task of supporting the

GLAD windows. ACTOR has many classes that can be utilized

to construct efficient and easily accessible data struc-

tures. Of these classes, various descendants of the

Collection class are ideal for holding database object

information. The Collection class is easily accessible

through keys, indexes and elements. In addition, a Collec-

tion can store heterogenous information. Moreover, various

complex and primitive data items can be stored in the same

Collection. A GLAD database object is a Collection of GLAD

objects. To access different databases, a global variable

Collection named GLAD must be created. This Collection will

hold all of the GLAD databases. In other words, we can view

GLAD databases in the following manner:

1. Databases contained within the GLAD application
are ultimately Collections of Collections.

2. Each database Collection consists of a group of
database objects.

83

N!

* - . - 4 - h r .j

3. Each database object is a Collection of sub-
objects that are analgous to tables and
attributes of the relational model.

A. A USEFUL ANALOGY

An analogy that compares a GLAD database to an office

building will be useful for illustrating the capabilites of

the Collection class in developing GLAD data structures. An

office building with many floors can be compared to a

Collection with many elements. The Collection corresponds

to the building, and the elements of the Collection corres-

pond to the floors that are contained within the building.

The elements of the collection are database objects that

define a database. Each of these objects are either related

to, associated with or used in conjunction with other

objects that define aggregate or generalized objects. The

floors of the building correspond to the elements of the

collection. Each element carries out tasks that are inte-

grated to accomplish a function or represent specialized

functions of a generalized office function. The objects of

the database are collections of sub-objects. Each of these

sub-objects describes the parent object. The parent object

is composed of one or more sub-objects.

Rooms that are located on the floors correspond to the

sub-objects of the database. These rooms carry out activi-

ties that contribute to tasks that are assigned to each

floor. In other words, these room activites describe the

floor's tasks.

84

"4 " .' . ' '-" . ' " ' o . '' .'' " " "' . . . ° , '' J 2 ."'. , -''. ' " .' ' '

Additional databases can be added to GLAD by increasing

the size of the Collection. Collection size can be increas-

ed through the grow method. Similarly, if we need more

floors for the building, additional floors can be added onto

the top of the building.

B. ABOUT COLLECTIONS

The ACTOR manual states that the class Collection is the

richest part of the ACTOR class tree. Collection is defined

as an object that holds a group of sub-objects called

elements. However, the Collection class can not be directly

accessed. It is a formal class that provides universal

properties for descendents. The Collection descendents

serve as types of Collections that hold database objects.

Array, Set and Dictionary are descendents that can be used

to hold GLAD objects. [Ref. 4:pp. 169-210]

1. Arrays For Glad Objects

An array is a descendant of the formal class

IndexedCollection. The IndexedCollection is a type of

collection in which individual elements are referenced by

integer values Whitewater [Ref. 4:p. 164]. In addition, the

IndexedCollection unifies the Array, ByteCollection and

Interval classes. ByteCollection, Array and Interval can be

classified as siblings in the ACTOR class tree.

An Array can be created to hold database informa-

tion. The Array information can be accessed by refering to

the Array name with the bracketed index of the desired

85
*L

element. The Array class shall be utilized to maintain at-

tributes\sub-objects of a particular database object. The

__rbu _ array will -'- 3ne of the elements of the database

object collection.

2. The Dictionary Class

The Dictionary is a type of KeyedCollection class.

The keyed collection allows direct access to elements

through use of a user specified index/key. The KeyedCollec-

tion maintains elements in an unordered manner analogous to

set elements. The advantages of the KeyedCollection over an

ACTOR set are substantial. An ACTOR set has elements that

can only be accessed through membership operations. The

element itself must be specified to be retrieved from the

SET. A KeyedCollection element can be accessed through a

user specified index/key. In many cases, the user may have

access to the key/index but not know the name of the

element. The KeyedCollection has greater flexibility than

the Set and powerful operations that the Set does not

possess. The below listed operations can be performed on

Dictionaries that are descendants of KeyedCollections.

a. The Add Method

An element can be added to a Dictionary with the

inherited KeyedCollection method Add. An Add message to the

method takes two parameters and can be utilized in the

following manner:

86

%-

NOx. XTX Z_~' WX (W W11 VWN .W ~ ~ .WJ (jp.'W

1. Datadictionary new(Dictionary, 10); <CR>

2. add(Datadictionary,"Student", "University Object 1")
<CR>

3. Datadictionary; <CR>

4. Datadictinary("Student").

b. The At Method

The At method can be used to obtain a value that

is associated with a specified user defined key. The At

method can be used in the following manner:

1. at(Datadictionary, "Student"); <CR>

2. "University Object 1".

"University Object 1" is the returned item that

. is stored at the above specifed user defined key. If an

attempt is made to access an item that either does not exist

or has a non-existent key, nil is returned by the system.

c. The Remove method

The Remove method can be used to remove an item

from the Dictionary. The Remove method deletes the desig-

nated element and returns the key, but if it does not find

the designated element, it returns nil. Consider the

following example:

1. remove(Datadictionary,"Student") ; <CR>

2. "Student".

d. Other Useful Methods

The Dictionary class possesses other methods

that can be used to return association objects, enumerate

elements in the Dictionary, get the key and values of

87

elements, and a host of other very useful and powerful

operations.

e. GLAD Object Use of the Dictionary Class

The Dictionary will be utilized to hold the

major objects of the database. Powerful methods of manip-

ulation and access will be made available to the data user

from the Dictionary Class. In addition, the database can

easily be expanded through the grow method. Old objects can

be purged and space obtained through the reclaim method.

The Dictionary class seems to be well suited for

database objects. When information is desired about a

particular object, it should be a simple matter to access

the information through user defined keys. The access

method is analogous to looking up information in a diction-

ary with the alphabetized word index.

The above-mentioned methods will be transparent

to the user. The methods shall be utilized to support the

window interfaces and help provide the best possible data

manipulation environment. Ultimately, a Dictionary holding

a GLAD database, such as the University database discussed

in Wu [Ref. l:pp. 1-10], will be created. The dictionary

would contain all the major database object and would be

represented by the system in the following manner:

Univdb (#Student, #Employee, #Dept, #Committee)

88

~ ~ W T 7V 4 .. - - - . " - . l-).T N 4- -. ,-pl^ . .. -

3. The Set Class

An ACTOR set is a collection of unique elements.

Only unique elements can belong to a Set. A Set can not

contain duplicate elements, and any attempt to add an

element that is already contained in the Set will fail. An

element is either a member of the Set or not a member of the

Set. Set membership operations are the only operations that

are allowed to be performed on an ACTOR Set. An ACTOR Set

can store 16K-1 elements. The cardinality of a set is

maintained in the tally instince variable. [Ref. 4:p. 201]

a. Set Operations

From the Collection class, the set inherits both

add and remove methods to put elements into and remove them

from the Set.

b. GLAD Object Use of Sets

The Collection that maintains all of the GLAD

databases shall be a set. Essentially, these databases

merely have to be added to or removed from the GLAD applica-

tion. Any data manipulation and data definition would be

done on the specific databases. The Set class is limited in

capability but is adequate to maintain the various GLAD

databases.

C. GLAD DATA STRUCTURES FOR THE UNIVERSITY DATABASE

To illustrate the use of the GLAD data structures, the

University Database of Wu [Ref. l:pp. 1-10] shall be

utilized to analyze database objects as instances of GLAD

89

0 . . " ,* .% ." .' .% - % % - .-

data objects. We shall define instances of GLAD objects for

the higher-level STUDENT, COMMITTEE, EMPLOYEE and DEPT

objects.

1. The DEPT Object

The DEPT object is a very important object of the

UNIVERSITY Database. DEPT is related to all of the other

major objects in the UNIVEPSITY database. The DEPT object

contains both atomic and non-atomic sub-object or attribute

types. The attributes are CHAIR, shorthand for chairman, of

type FACULTY; NAME, the DEPT objects only atomic attribute,

of type string; and tenured, a complex set type attribute,

of type TPROF. All of the other UNIVERSITY database objects

contain a sub-object of type DEPT. In summary, DEPT

connects the objects of the database.

a. DEPT as an Instance of GLAD Object

Consid'er a Dictionary named DEPT with keys of

"name," "location," "members," "type" and "attributes." The

keys will be utilized to access the following information:

1. "name"--The string name of the object "DEPT."

2. "location"--A point which holds the origin of
the rectangle. For example, 30@30.

3. "members"--of type Deptfile that contains tuples
of the DEPT object.

4. "type"--of type char. Either "a" or "g" for agg-
regate or generalized. DEPT is "a" since it is
the aggregation of several sub-objects.

5. "attributes"--an array of attributes. Each array
element shall contain an ordered pair of the
data attribute name and object name. [Ref. 16:p. 6]

90

0 ?n

b. Files and Delimiters for DeptFile

In addition to the above information, the follow-

ing points need to be emphasized. First, the "members"

element index of the Dictionary refers to a DeptFile of type

TextFile. The entries in the file will be represented in

the following manner:

Lum@"Computer Science"@Set ("Lum" "Hsiao" "Wu" "McGhee") I
Latta@ "Math" @Set ("Lucas" "Weir" "Latta" "Devito") I

The "@" and "I" symbols are used respectively to delineate

fields and tuples. The final element of the tuple consists

of a set of tenured professors for each department. The

elements of this set are strings of names. The first

element in the tuple is the name of the department chairman

and is of type faculty. The name will probably be contained

within the set of tenured professors. The name attribute is

a string value. This string is not the same type as an

element in the set of tenured professors, TPROF.

2. The STUDENT Object

The STUDENT object is an aggregate object composed

of both atomic and complex sub-objects. NAME is an atomic

attribute of type string, AGE and GPA are atomic sub-objects

of type integer, and MAJOR is a complex sub-object of type

DEPT. These previously mentioned objects define the aggre-

gate STUDENT object. In essence, the complex aggregate

object DEPT is nested within the STUDENT object.

91

"

a. STUDENT as an Instance of GLAD object

An instance of the STUDENT object is similar to

the instance ,f the DEPT object. The major difference is

that STUDENT maintains DEPT as one of its attributes or sub-

objects. In other words, the STUDENT object is an instance

of a complex GLAD object. STUDENT maintains another

instance of a primary database object, MAJOR of type DEPT,

as an attribute. The attribute array maintains the attri-

bute names and shall be represented in the following manner:

- STUDENT("attributes") =
Array(Array("NAME" #basic) Array("AGE" #basic)
Array ("GPA" #basic) Array("DEPARTMENT" #DEPT);

As stated in Wu (Ref. 16:pp. 1-7], basic is used

when the attribute type is defined in ACTOR. The Object

name is necessary for appropriate shading to describe the

window interface. If the object name is not defined in

ACTOR, the name of the object will be a complex type, such

as DEPT or TPROF, that has been defined for the database.

3. The EMPLOYEE Object

The EMPLOYEE Object, of the University database, is

a different kind or object than the DEPT and STUDENT objects

that have been discussed. EMPLOYEE is a type of generalized

object. This type of object is a generalized type of a more

specialized object. FACULTY and SECRETARY are specialized

* objects of the more generalized EMPLOYEE type. The attri-

bilte "JOBTYPE" nf type CATEGORY indicates the type of the

specialized EMPLOYEE.

92

4. The COMMITTEE Object

The COMMITTEE Object is an aggregate object. It has

attriutes of "NAMIVE", "MEMBERS" and "PURPOSE." The "MEMBERS"

attribute is of type FACULTY. FACULTY is a complex special-

ized object that is nested within COMMITTEE. This implicit

relationship forms an abstract, higher level association.

Specifiedlly, CO ±iTTEE is associated to EMPLOYEE through

the specialized FACULTY object.

5. The Higher Level Abstractions

The above objects illustrate how the higher level

abstractions of generalization, aggregation and association

are supported by GLAD. In addition, GLAD also supports

classification of objects. Every specific element of an

object can be classified as that type of object. For

example "John Smith" is an element of "MEMBERS" of type

StudentFile. Therefore, "John Smith" is classified as a

STUDENT.

D. THE QUERY COLLECTION

The data structures that collect information from the

query window shall be designated as query collections.

Essentially, these data structures shall take information

from the database user via the query window and pass it to a

translator. An array shall be utilized to obtain the query

information.

93

1. Ouery Array Entries

The array entries shall contain all of the data that

is pertinent to the designated query. Each entry shall

consist of an ordered pair of items. The first entry shall

co,,tain the object name and any instructions to be performed

on the query object. Subsequent entries will contain the

attribute names and any instructions to be performed on the

attributes. The following is the general form for a

possible representation of the GLAD query collection:

- QUERYCOLLECTION("OBJECTNAME") =
Array(Array(OBJNAME OBJINST) Array(AttNamel Instl)
Array(AttName2 Inst2) Array(Attrname3 Inst3);

2. An Example Ouery Collection

The general form contains all of the pertinent

information of the query collection in object oriented

format. A specific example shall further illustrate the

query collection. Consider a query of the STUDENT object of

the UNIVERSITY database where the goal is to retrieve the

names of students who have grade point averages equal to or

higher than 3.5. After the user inputs information into the

STUDENT query window, the query is represented by the query

collection in the following manner:

- QUERYCOLLECTION(#STUDENT) =
Array(Array(#STUDENT " ") Array(#* "
Array(#SNAME ".P") Array(#AGE "
Array(#GPA ">= 3.5") Array(#MAJOR " "1);

The above returned example Array could be obtained

at the ACTOR level if 'QUERYCOLLECTION(#STUDENT); <CR>' was

typed into the ACTOR display window. The system is asked to

94

show the representation of the STUDENT query array contained

in the indexed collection that holds all query collections.

The information is taken as symbols for the first element of

each array and strings of characters for the second element

instructions. A blank string is used to indicate no

instructions on the object or attribute. The above example

is pedagogical in nature, and it is not intended that the

user would have access to the ACTOR system. The example

merely shows the physical representation of the query

object.

E. THE PHYSICAL DESCRIPTION

The data structures that support the GLAD interfaces

have been discussed in great detail. The Array, Dictionary

and Set classes, direct descendants of the Collection class,

are ideally suited for supporting the GLAD interfaces.

Essentially, the entire GLAD database application can be

implemented as a Collection of Collections. The pedagogical

University database example illustrated the use of specific

ACTOR classes as data structures for supporting instances of

GLAD objects. [Ref. l:pp. 1-10]

Both physical and logical views of the GLAD data

structures have been discussed. Data structures to support

the window interfaces have been described in detail.

Information contained in these data structures must be

translated into extended SQL and ultimately primitive SQL to

obtain data from the relational backend. Ultimately, data

95

S

from the supporting data structures must be accessed in

object oriented format, translated to relational format, and

retranslated to object oriented format. The translation

scheme and algorithm for the interfaces will be discussed in

the subsequent chapter.

I!

96

Orr r .-'rJ~

.&..A .

VII. ALGORITHMS FOR THE TRANSLATION

The window interfaces and data structures that will

support GLAD have been discussed and analyzed in great

detail in the previous chapters. Essentially, all of the

objects and wirdows support the GLAD system with object

oriented interfaces to the user and to the relational

database system. GLAD can be thought of as a bridge that

data travels on to the relational side and back to the

object oriented side. However, this bridge is invisible to

the user. From the user's vantage point, he only sees

object oriented data.

A. THE TRANSPARENT LINK TO THE SYSTEM

Implementors of databases that use higher-level inter-

faces spend a great deal of time and effort in designing the

database system in a manner that will allow the user to be

ignorant of the design and implementation details. There-

fore, when the user formulates a query, he does not have to

know how the system is actually retrieving the data. With

GLAD, efficient implementation of the higher level abstrac-

tions, supporting data structures and window interfaces is

critical for obtaining an efficient database system with

reasonable response time. Since the user is removed an

additional level from the physical database, an efficient

9

97

implementation of the interface is extremely important for

retrieving data in a reasonable amount of time.

B. GLAD ON TOP OF SQL

As mentioned earlier, GLAD is to be built on top of a

SQL based relational database system. It is anticipated

that the SQL based system will function in the same manner

as it would if it were the end user system with the SQL

query language as the interface to the user. Instead of

being directly supplied information by the user, the SQL

based system will obtain information from GLAD and return

data to GLAD in a manner that is entirely transparent to the

user.

Consider a modular view of GLAD sitting on top of a SQL

based system, DB2 by Date [Ref. 14:p. 103], and main com-

ponents. A diagram of the system is shown in Figure 33.

A user of a SQL-based relational database system would

perceive the database as base tables. In Date [Ref. 6:p.

103], the following definition of tables and views are

given:

A base table is a "real" table--i.e., a table that
physically exists, in the sense that there exist
physically stored records, and possibly physical
indexes.... By contrast, a view is a "virtual" table--
i.e., a table that does not directly exist in storage.

With GLAD the user will be entirely shielded from the

lower half of the diagram that uses SQL as the end user

interface and tables and views to represent data entities.

Instead of tuplas in tabieb, the user perceives data as

98

I. ..

-,GLAD WINDOW

E T~ECT2 T ..E.T.

IEXTENDED SQL

I SQL

Figure 34. GLAD and SQL System Modules

graphics objects that maintain all the relevant facts and

information about the data entities. Therefore, the user

does not have to navigate through the rudimentary constructs

of the relational SQL query language.

C. THE TRANSLATION SuHEME

A transparent link to the user can be formed with an

effective translation scheme and efficient algorithms to the

support the scheme. Consider the translation scheme of GLAD

in Wu [Ref. 16:p. 5]. It is shown in Figure 35.

The left side of the diagram contains the data manipul-

ation language scheme. The user formulates a database query

with the query window. The data from the query is collected

from the query window in an object query collection. N1ext,

99

DML USER DDL USER
data create
def. window

GLAD GLAD GLAD
QUERY QUERY RESULT D3

TRANSLATOR DISPLAYER GENERATOR

extended query result
SQL query in GLAD data

* object * format def. in ESQL

ESQL - SQL RELATIONAL-to ESQL - SQL
-GLAD Object

TRANSLATOR REFORMATTER TRANSLATOR

SQL query result data
* query in * def. in * SQL

relational format

SQL - BASED RELATIONAL DBMS

db

Figure 35. Translation Scheme

the query collection is translated into extended SQL syntax

-by the GLAD query translator. Then, the extended SQL query

* is finally translated into SQL syntax. The formatted SQL

query is used by the relational database model to retrieve

p 100

or select information stored in the database. The relation-

al query result is sent to a relational-to-GLAD object

reformatter to change relational query results to object

oriented format. The query results, now in GLAD object

format, are sent to the GLAD query result displayer. The

result displayer takes the query result information and

displays the results to the user in a result window.

The right side of the diagram contains the data defini-

tion language scheme. The user defines his database through

the create database window. Information from the create

window is collected by a create data base object and sent to 0

the GLAD database generator. Data Definition is completed

and the data is put into extended SQL syntax. The ESQL-SQL

translator translates the extended SQL query and formulates

the syntax for the SQL create table operation. The tables

are then created and stored in the database. This diagram

presents a high level view and summary of GLAD used in

conjunction with a relational data base model.

D. AN ALGORITHM FOR THE TRANSLATION OF GLAD

As mentioned earlier, GLAD objects move across a bridge

like interface to the relational system. By the time these

objects arrive at the relational system they must be trans-

lated or converted to relational format. The relational

system will only understand commands and queries in its

native query language. Therefore, a generalized translation

algorithm to accomplish conversion from object oriented

101

.

J

format to relational format must be developed and imple-

mented. Consider the translation algorithm contained below

in Figure 36.

if (MORETHAN ONEOBJECTUSEDINQUERY) then

JOINOBJECTS;

for i := 1 to NOPARTIALQUERIESINQUERY do begin

if (INSTRUCTIONSONOBJECTNAME(i)) then
OBJ_OPERATIONS(i);

while (EXECUTEANDDECODE(i)) do
begin

if (ASTERISK FOR ATTRIBUTE NAME(i)) and
EXISTENTIALQUANTIFIER(i) then

SPECIALOPS(i)
else if (DOT P ONATTRIBUTE(i)) then
RETRIEVE SELECT(i)
else if (NO INSTRUCTIONS(i)) then NO OP(i)
else if (INSTRUCTIONS ON ATTRIBUTE(i)) then

RELATIONALOPERATORS;
end;

if (not EXECUTE AND DECODE(i)) then
RESET GLOBAL-COUNTER;

end; (for i 1 to NOPARTIALQUERIESIN_QUERY

Figure 36. The GLAD Translation Algorithm

The algorithm of Figure 36 shall be used to make the

translation to extended-relational format by accomplishing

the correlation of specific object oriented constructs to

relational ccnstructs, and substituting or converting these

constructs to extended SQL format.

102

"t

E. AN ANALYSIS OF THE TRANSLATION ALGORITHM

The algorithm to translate the GLAD query divides the

query collection into number of objects, object instruc-

tions and attribute instructions to formulate the SQL query

on a line by line basis. The SQL translation is handled in

a line by line manner to form the SELECT, FROM and WHERE

lines that define the major components of a SQL query.

Consider the translation of any GLAD query that consists of

a query collection that has sub-queries on objects. The

following major query items must be translated:

1. The number of objects in the query.

2. Any instructions on the object name.

3. Specific instructions for each attribute.

1. If There are Multiple Query Objects

If there are multiple objects used in the GLA,

query, these objects must be joined as tables in the SQL

query. Simple Objects can be directly correlated to a table

that exists in the relational database. Complex Objects can

be directly correlated to one primary table and one or many

supporting identifier tables. It is anticipated that the

create database function of GLAD will create primary rela-

tional tables that have the same name as the corresponding

database object. Therefore, the translation will be able to

substitute the object names directly into the FROM line of

the SQL query. This process will be accomplished by the

103

Vol

implementation of the following portion of the translation

algorithm:

- if (MORE THAN 0N; T C3JECT USErDIN_QUERY) then
JOIN-OBJECTS;

In a conventicnal manner, MORETHANONEOBJECTUSED-

IN_ QUERY would be implemented as a function that returns a

boolean value of true if maltiple objects are used for the

query. The query collection would be scanned by the

function. If true was returned, a procedure called JOINOB-

JECTS would be utilized to formulate a relational join on

the from line of the SQL query.

2. Each Object as a Partial Ouery

Each object that is used to formulate the GLAD query

shall be considered to be a partial query for the GLAD

query. Therefore, each of these objects must be decoded by

the translator. The following portion of the algorithm

steps through each of the objects in the algorithm:

- for i := 1 to NOPARTIALQUERIESINQUERY do

3. Decoding the Individual Objects

Inside of each iterative step of the above loop, the

instructions on the objects and attribute names are decoded.

a. Decoding Object Instructions

First, consider decoding instructions on the

object name. Instructions on attribute names are used to

print out string messages in the query. These messages make

the returned results more understandable. The following

104

portion of the algorithm shall accomplish the translation

of object instructions:

- if (INSTRUCTIONSONOBJECTNAME(i)) then
OBJOPERATIONS(i);

If there are any instructions to be carried out

on the object, such as a string to be returned with the

retrieved values, they will be executed through a procedure

named OBJ_OPERATIONS(i). This procedure will be called if

a function called INSTRUCTIONSONOBJECTNAME(i) returns a

boolean value of true. The function will evaluate to true

if the attribute entry that holds object instructions does

not contain a blank string.

b. Decoding Attribute Instructions

Each query collection has an array of ordered

pairs that contain the attribute name and specific instruc-

tions that are to be performed on that attribute. The

following portion of the algorithm steps through each

attribute in the array and decodes the attribute instruc-

tions:

- while (EXECUTEANDDECODE(i)) do

This system shall continue to execute this

portion of the algorithm until all of the attributes have

been decoded. Essentially, EXECUTEANDDECODE(i) is a

function that returns a boolean value of true as long as

attribute instructions remain to be decoded. The attri-

bute's are referenced in specific decode procedures by a

105

global counter that is reset when each sub-query is decod-

ed. After an attribute's object oriented instructions are

decoded, control of the translation returns to the top of

the while loop. While decoding attribute instructions, the

translator keys on the following items for the translation:

1. An asterisk for the attribute name used in
conjunction with an existential quantifier

2. A '.P1 operation for an attribute instruc-
tion to indicate an attribute retrieval

3. A blank character string for attribute
instructions

4. Relational operators for attribute instruc-

tions.

(1) Asterisk and Existential Quantifier.

Special operations will be executed if both functions

evaluate true in the following portion of the translation

algorithm:

- if (ASTERISK FOR ATTRIBUTE NAME(i)) and
EXISTENTIAL QUANTIFIER(i) then
SPECIALOPS(i)

The SPECIALOPS(i) procedure shall formu-

late a nested select query from the pseudo attribute

asterisk '*' containing instructions of '.EXIST'. However,

* if some type of instruction other than the existential

quantifier is used with the '*' attribute, a nested select

query will not be formed.

(2) '.P' Operations for Retrieval. If the

attribute instruction field contains a '.P', then that

particular attribute will be designated for retrieval as

1

~106

4

r J.~

indicated by the below listed portion of the translation

algorithm:

- if (DOT P ON ATTRIBUTE(i)) then RE:RIEVE SELEC:(i)

DOTPONATTRIBUTE(i) is a boolean function that

will call the RETRIEVESELECT procedure if the function

evaluates true. The function shall evaluate true when '.P'

is contained in the character string for attribute instruc-

tions. In addition, it must be emphasized that '.P' can be

qualified with further operations that the translator will

handle.

(3) No Instructions on the Attribute. If the

instruction field contains a blank character string, then a

simple no-operation procedure is executed and control is

returned to the main decode loop after the attribute counter

is incremented. The following portion of the algorithm will

execute the no-operation procedure if the boolean function

evaluates to true:

- if (NOINSTRUCTIONSONATTRIBUTE(i)) then NOOP(i)

(4 Relational Operators { =. <>. <. > }. If

instructions exist on the attribute besides those that have

already been covered, the instructions will be relational

operators. If the attribute instruction field contains

equal to (=), not equal or unequal (<>), less than (<) or

greater than (>), the INSTRUCTIONSONATTRIBUTE(i) function

will evaluate to true. The RELATIONALOPERATORS procedure

will be invoked to handle the attribute instructions.

107

, . , ::- ., I J LT \ ! ;W '7 '.~ K J' -L~ *C K7 W7 W Z-

F. FROM EXTENDED SQL TO SQL SYNTAX

As previously discussed, the correlations between the

object oriented to extended SQL syntax are nearly a perfect

one-to-one correspondence. However, the format of the

extended SQL syntax is not suitable for the final SQL queiy.

This extended syntax shall translate the complex data types

of the extended query to atomic data types. Through the use

of a join on a surrogate identifier table, the complex data

type will be represented in the relational database as

atomic data. Consider the following algorithm that is

contained in Figure 37 and will be used by the ESQL to SQL

translator.

for i := 1 to NUM LINES IN EXTENDED QUERY do begin
if ESQLLineCONTAINS_COMPLEXDATA(i) then
begin

TRANSLATEATOMICDATACONSTRUCTS(i);
COMPLEX := true;

end;
if COMPLEX then

JOINIDENTIFIERTABLESWITHOBJECTTABLE
else

SQLEQUALSESQL
end;

Figure 37. Algorithm for ESQL to SQL

Essentially, the ESQL to SQL translator will be required

to iterate through an array type structure that holds the4!

complex data, parse the data, and substitute atomic con-

structs (i.e., DID: integer <-- MAJOR: DEPT). Then the

108

surrogate identifier table will be substituted in the FROM

line (i.e., FROM DEPT, IDDEPT <-- FROM DEPT).

G. A TRANSLATION EXAMPLE

Consider a simple example to illustrate the entire

translation process. The database user wishes to make a

STUDENT query that will retrieve all student names for

students that have a grade point average of greater than or

equal to 3.5 and are math majors. The first step in the

query process is putting this plain English query informa-

tion into the query window. Figure 28 illustrates the

STUDENT query window after the user has entered the data.

STUDENT QUERY

STUDENT

SNAME .P

AGE

GPA >= 3.5

MAJOR = 'MATH'

Figure 38. GLAD Query Window

.After the user has entered the above information, a

method that loads the query collection shall be utilized.

The query collection shall contain only one element:
0

109

- QUERYCOLLECTION(#STUDENT) =

Array(Array(#STUDENT " ") Array(#* "

Array(#SNAME ".P") Array(#AGE ")
Array(#GPA ">= 3.5") Array(#MAJOR "MATH");

Next, the STUDENT element will be translated by the GLAD

query translator into ESQL syntax.

1. Number of Obiects in the Query

The first step in the translation is determining if

there is more than one object used in the query. In the

example, there is only one object in the query. The

function MORETHANONEOBJECTUSEDINQUERY evaluates to

false, and the procedure JOINOBJECTS is not called.

Moreover, the ESQL FROM line will only have one table. At

this point in the query the ESQL query array only has two

elements that are not blank. Figure 39 contains the ESQL

query after the FROM line has been translated.

ESQL ARRAY

1 SELECT

2 FROM STUDENT

3 @@@@@@@@@@

4 @@@@@@@@@@

5 @@@@@@@@@@

Figure 39. ESQL Array during Query Translation

ii0

At this point, the attributes have not been decoded

so the only lines that are resident in the ESQL array are

the SELECT and FROM STUDENT lines. The other lines have

been initialized to '@@@@@@@@@@' which is a sentinel for

decoding.

2. Number of Partial Queries in Ouery

Each of the objects in the query collection repre-

sent a partial query. The loop with i := 1 to NO PAR-

TIALQUERIESINQUERY will execute only once for the example

query of Figure 38 because there is only one query object in

the query collection.

3. Decoding the Object and Attribute Instructions

The loop while EXECUTEANDDECODE(i) will continue

to execute until the function EXECUTEANDDECODE(i) evalua-

tes to false.

a. Decoding the Object Instuctions

The query collection is checked to determine if

there are object instructions that must translated. The

first element in the query array is evaluated by the

function INSTRUCTIONSONOBJECTNAME(i). The function will

check to see if the instruction field has instructions. If

the field is blank, the function will return a boolean value

of true and call OBJ_OPERATIONS(i). In the example con-

tained in Figure 38, there are no instructions on the

attribute name. The function will evaluate to false.

0 i

111

0|

b. Decoding the Attribute Instructions

Next, each of the attributes will be checked to

determine if there are instructions for decoding. The while

EXECUTEANDDECODE(i) loop will continue to execute until

all the attribute instructions have been decoded. The * and

AGE attributes contained in the query have no instructions.

These attributes cause the NOINSTRUCTIONS(i) function to

evaluate true and call the NOOP(i) procedure. The NOOP(i)

procedure increments the global counter but does not write

to the ESQL query array. The second attribute, SNAME,

causes the DOTPONOPERATION_ function to evaluate true.

The translator analyzes the instruction field of SNAME and

determines a '.P' operation must be performed on SNAME. The

RETRIEVESELECT(i) procedure is called, and SNAME is written

to the select line. At this point, the first two lines of

the query have been formed, and the system could retrieve

all of the STUDENT names from the STUDENT table. However, a

condition still needs to be specified and the translation is

still incomplete. Figure 40 shows the partially completed

ERSQL query.

The fourth attribute, GPA, is translated, and

the INSTRUCTIONSONATTRIBUTE(i) function evaluates true and

calls the RELATIONALOPERATORS procedure. This procedure

translates the instruction field and determines that a legal

operation, '>=' (greater or equal than), is to be performed

1on the integer 3.5. Since this operation represents the

112

ESQL ARRAY

! SELECT SNAME

2 FROM STUDENT

3 @@@@@@@@@@

4 @@@@@@@@@@

5 @@@@@@@@@@

Figure 40. ESQL Array after Two Lines are Translated

first condition of the query, the attribute operation is

written to the third line of the query that will be composed

of 'WHERE GPA >= 3.5'. Figure 41 shows the translated

ESQL. This partial query represents the first three lines

of the ESQL translation. The final attribute to be decoded

is MAJOR. The MAJOR attribute is a complex attribute of

type DEPT. For the ESQL translation, the complex data type

is represented like any other attribute in the ESQL query.

The INSTRUCTIONSONATTRIBUTE(i) function is evaluated to

true and calls the RELATIONALOPERATORS procedure. The

RELATIONALOPERATORS procedure determines that a valid

operation, = (equals), is to be performed on the MAJOR

attribute. This operation will be translated to 'AND MAJOR

* = 'MATH' ' and written to the fourth line of the ESQL query

array. Figure 42 displays the final ESQL translation after

all attributes have been decoded.

113

ESQL ARRAY

1 SELECT SNAME

2 FROM STUDENT

3 WHERE GPA >= 3.5

4 @@@@@@@@@@

5 @@@@@@@@@@

Figure 41. ESQL Query with Three Lines Translated

ESQL ARRAY

1 SELECT SNAME

2 FROM STUDENT

3 WHERE GPA >= 3.5

4 AND MAJOR = 'MATH'

5 @@@@@@@@@@

Figure 42. ESQL Array after Translation is Complete

The ESQL query is ready to be translated to

primitive SQL syntax for the final SQL query. The ESQL

query shall be sent to the ESQL to SQL translator to

accomplish the final translation.

114

0

- - - - ii i'V 7 J - T6r - .A 7.

4. ESOL TO SOL

For the final translation, the ESQL to SQL trans-

lator shall iterate through the query array and determine if

a line contains a complex data type. The first four lines

in the ESQL query can be substituted without change to final

SQL query.

The last line of the query has a non-atomic attri-

bute type and a complex translation must occur. The SQL

translator determines that MAJOR is not atomic by consulting

a table that holds all complex data types. MAJOR is of type

DEPT. The ESQLLineCONTAINSCOMPLEXDATA(i) function

evaluates to true, and the procedure TRANSLATEATOMICDATA_-

CONSTRUCTS(i) will translate the final line to read 'AND

DIDNAME = 'MATH' '. DIDNAME is an identifer of type string

that will be compatible with primitive SQL constructs.

The final step in the translation process is the

procedure JOINIDENTIFIERTABLESWITHOBJECTTABLE adding

the identifier table, IDTOWN, to the FROM line. IDTOWN acts

as a surrogate table that is joined with the STUDENT table

to indirectly represent complex data as atomic data. The

completed SQL query is shown below in Figure 43. Now the

SQL query can be delivered to the relational system to

retrieve the desired student names.

The results of the query will be returned to the

translator in set type format and retranslated to object-

oriented format for user view.

115

"

SQL ARRAY

FROM STUDENT, IDDEPT

3 WHERE GPA >= 3.5

4 AND DIDNAME = 'MATH'

5 @@@@@@@@@@

Figure 43. SQL Array after Translation is Complete

116

.1'

VIII. CONCLUSION

The need for a user friendly graphics interface to the

relational database system has been validated by examining

the deficiencies and limitations of the current relational

database systems. The deficiencies and limitations of these

syste.ms are caused by the relational model's lack of

semantic capability. Relational systems lack semantic power

because they are based on poor semantic data models.

Systems that support specific higher level abstraction

concepts have the power, flexibility and capability to

provide a user friendly environment and extended relational

capabilities. These systems should support aggregation,

association, generalization and classification.

Inadequate semantic capability is not the only reason

that relational systems are not well suited for the entire

population of database users. Moreover, standard relational

query languages are untenable for naive and inexperienced

database users. People who generally do not have formal

computer education or training are often in administrative,

clerical and technical positions that require the use of

computers to do their jobs. In fact, computer technology

has experienced wide spread proliferation, and computers

have permeated our society. Therefore, it is important that

non-computer professionals who need computer technology to

117

,["

0
perform every day job functions be given the best possible

user interfaces for their working databases.

Research has determined that the previously discussed

relational query languages are entirely unsuitable for these

types of individuals. Tuple calculus and relational algebra

based systems may provide and effective user interface with

QUETJ and SQL for the mathematician or computer scientist.

The mathematical query concepts can be associated by the

user to already familiar math or computer concepts. Unfor-

tunately, the naive user will probably not be familiar with

these concepts.

From a human factors design point of view, a system must

provide the user with functional items that can be as-

sociated to familiar concepts. Database entities and sub-

entities can be effectively associated with simple graphics

objects. GLAD utilizes rectangles and lines to make these

correlations between the real world entity and abstract

object.

A. EXTENDING THE RELATIONAL SYSTEM

More than a decade of arduous research has validated the

existing relational database technology. Relational theory

has provided a sound theoretical basis for the current rela-

tional systems. It would be unwise to totally abandon this

technology and start from ground zero to develop a new

system. Perhaps, a major technological break through in

computer architecture would merit a complete database system

118

redesign. Furthermore, most of today's database technology

is based on research that was done nearly 20 years ago at

IBM research center in San Jose, California. In addition to

Codd's relational model, considerable advances were made in

all aspects of database technology that are entirely

relevant to today's systems.

1. A Stable Database Technology

Today, computers have become relatively inexpensive

and have been designed to be easier to learn and use.

Hardware component prices have consistently plummeted in

value. In the last decade, memory has become orders of

magnitude cheaper. Despite advances in both hardware and

software, database theory has fundamentally remained consis-

tent since the advent of the relational model.

2. Extend Existing Database Technology

Therefore, until a major technological break through

has been accomplished, such as the development of an

inexpensive secondary storage device that is orders of

magnitude faster than disks, the wise approaches for

improving database systems are centered around extending the

existing data base technology. GLAD extends the existing

relational system through graphical user interfaces that

transport data and results to and from the relational

system.

119

li

B. THE OBJECT ORIENTED SYSTEM

When implemented, GLAD's power, flexibility and user

friendliness will provide the best possible interface to the

user. Much of this capability is derived from the object

oriented approach. ACTOR, the object oriented language used

for GLAD implementation, will provide the window interfaces

to the user. The capabilities of GLAD's user interfaces

will be derived from ACTOR's object-oriented classes and

methods. ACTOR's object oriented classes will supply GLAD

with the graphical objects that represent the database. In

addition, GLAD shall utilize ACTOR's Collection descendants

to define data structures that will effectively support the

user interfaces.

The relationship between ACTOR and GLAD is analogous to

the relationship between SQL and embedded PLI or Cobol.

However, a major difference is that GLAD can be represented

in a much more natural manner than SQL embedded in PLI.

C. FUTURE GLAD APPLICATIONS

GLAD has many potential uses for future applications.

It has potential military, administrative, educational and

training possibilities. The easy to use and learn inter-

faces will make the system available to the widest range of

database users.

2. Military Applications

GLAD has tremendous potential for a wide variety of

applications. In particular, GLAD seems well suited to a

* 120

0

wide variety of military uses and applications. Military

office usage of database could be aided significantly by

providing good graphics interfaces to military administra-

tive and data processing clerks. Military personnel often

report to their commands and must be immediately integrated

into the work environment without any significant on-the-job

training. In addition, there are high turnover rates in

most units due to transfers, discharges and reenlistments.

Persnnnel must constantly be retrained on systems. GLAD

could certainly help a clerk, that did not have computer

experience, to quickly become a proficient database user.

In a tactical environment, GLAD could be very

valuable to the field commander. It could be used to

formulate queries for portable PC based military data bases.

Intelligence, logistic and historical information could be

quickly accessed by troops and passed to their superiors for

important tactical and strategic evaluation.

2. Database Educational and Training Requirements

GLAD could be useful as a tutorial for teaching

naive users to use other database systems. Since GLAD is an

*extension of the relational database, a one-to-one corres-

pondence can be established for the GLAD items that are

substituted and translated to SQL items. This correspon-

dence can be used to show the user, in piece meal fashion,

how the GLAD query corresponds to the SQL query.

121

D. REMARKS ON IMPLEMENTATION

GLAD implementation of graphics interfaces is an on

going project with considerable work remaining in striking

the ACTOR code for the higher level interfaces. However,

much work has already been accomplished. In particular, the

higher level abstractions have been formulated. Conceptual-

ly, GLAD is entirely ready to be implemented.

1. Mastering ACTOR

The most significant challenge to the implementors

may be mastering the ACTOR programming language. The object

oriented approach requires considerable departure from

previous ways of forming code and writing programs. Many

programmers have developed their programming strategies in

ways that will require significant adaptation to object

oriented format. Although ACTOR programs will generally be

much shorter than a corresponding conventional, higher level

language programs, the ACTOR code may actually require more

thought than conventional code. The learning curve on

object oriented concepts seems to be high.

2. Interfaces and OueryCollections

However, once these concepts are mastered, object

oriented programming power can provide methods for graphical

interfaces that can not be obtained with conventional

languages. ACTOR maintains graphical methods, in a compact

and precise manner, that are readily available with object

oriented languages. ACTOR will be ideal for developing

122

WW VIV A I. NX -jWUT~'Qrw7~W -V

methods and classes that will define the data structures

that will support the ACTOR interfaces. The interfaces

shall be a collection point for data, and QueryCollection's

will serve as the transportation medium of this data to and

from the user.

3. The Bus Station Analogy

The bus station analogy should prove to be useful in

illustrating the interface implementations. A bus station

can be thought of as a collecting point for people that need

to ride the bus to a given destination. The query window is

a collecting point for data that must ultimately be trans-

ferred to the relational system and back to the user. The

bus is the vehicle of transportation for taking the people

to their destination. In fact, there are two types of

buses:

1. extended buses

2. native buses.

The extended buses take the people long distances

from state to state and city to city. The native or local

buses are driven by residents of the local community and

take the bus riders, who have completed their extended bus

ride, to the ultimate inner city or community destination.

In other words, the native buses are short range buses, and

the extended buses are long range buses.

The methods that translate the GLAD query informa-

tion to extended SQL information can be compared to the

123

extended bus that takes the user to the city of his inter-

mediate destination. The methods that translate the

extended SQL to native relational SQL can be compared to the

native or local bus that takes the user to his ultimate

destination.

E. EPILOGUE

The system formed from GLAD and a relational database

will provide a powerful and easy to use interface to the

widest possible audience of database users. GLAD represents

the natural evolution of the relational system. In essence,

the GLAD approach to database is evolutionary vice revolu-

tionary. GLAD is not revolutionary because it does not

propose a new database model with a new architecture to

support the implementation. It is evolutionary because it

takes a model that has already been validated and builds the

interface on top of that model. In fact, GLAD could be

implemented on the network, hierarchical and inverted list

data models. Since GLAD is not based on any specific kind

of model, it has a great deal of flexibility for serving as

a bridge between the user and database. This approach has

not been entirely explored and many systems based on this

concept should be implemented before graphics extensions

have been truly maximized as an effective man to machine

interface. Until technology surpasses the capabilities of

existing computer systems, the evolutionary approach

124

I

to designing new database systems will provide the highest

yield for the least investment.

125

APPENDIX A

A SIMULATED GLAD TRANSLATOR

program ObjectTranalator;

{ This program illustrates the use of the algorithm that
will be used to translate object query windows to SQL
syntax. The program is written in Borland Turbo
Pascal 3.0 and executed on IBM compatible PC/XT micro-
computer.
FOR THESIS RESEARCH IN CONJUNCTION WITH GLAD
Author Paul D. Grenseman, NPS/CS-71 - March 1988 }

type

OPERATION = string[16];
(Used to hold relational operators for attributes
or sub-objects that are queried)

NAME = string[30];
(Used to hold the NAME of the objects }

OIERATIONS = array[l..10] of operation;
(attribute operations of the query 1

NAMES = array[l..10] of NAME;
(The NAMES of the objects that will be queried)

INSTRUCTIONS = string[16];
{ INSTRUCTIONS to be performed on the entire
object such as select all attributes or count
all object attributes 1

ABOUT OBJECTS = record
OBJECT NAME: NAME;
OBJECTINST: INSTRUCTIONS;

end;

ABOUT ATTRIBUTES = record
ATTR NAME: NAMES;
ATTROPERATION: OPERATIONS;*end;

PARTIALQUERY = record
OBJECTINFO: ABOUTOBJECTS;

126

a. ~ - - - L L ' % ,.. . - . -Z.: - - -- * .

ATTRIBUTES: ABOUT ATTRIBUTES;
ISQUERIED: boolean;

end;

{ A query that is not joined or completed. The
user can elect to make a partial query complete
by selecting the QUIT option

OBJECTS = record
NAME: string[20];
ATTRIBUTES: array[l..10] of string[20];

end;
(The Pascal simulation of the ACTOR object.

< Object-declaration >
DEFOBJ < objectname >

< attribute-declaration >+
ENDOBJ

OBJECT QUERY WINDOW = array[l..10] of PARTIALQUERY;

{ Partial Queries to be joined or nested }

OBJ_STR = string[40];

JOBS = (FACULTIES, SECRETARIES);
(Possible Employee Jobs }

DEPT SET = (MATH, COMPUTER, MUSIC, PHYSICS, HISTORY);
(Departements the students can major in)

QUERY STR = string[50];
{ One line of the TRANSLATED object query)

SQL QUERY = array[l. .40] of QUERYSTR;
{ The translated sequel query in relation syntax

EXTENDED SQL QUERY = array[l..40] of QUERY STR;
{ The translated object query in extended
SQL syntax }

const
SENTINEL = '@@@@@@@@@@';
used during decoding process

var
ITH ATTRIBUTE: integer;
(The Ith attribute in the query it is used to
determine the placement of WHERE & AND

e,

X: integer;
(Subscript for array of attributes)

127

NO SELECTS: integer;
(Number of nested selects in partial query 4

i: integer;
Loop control variable fLz query

JOIN: boolean;
(Global boolean variable to indicate that
objects in a query are joined }

F: char;
(choose F or f to exit query process
FINISHED,
(FINISH set by f orF
MORE THAN: boolean;
{ more than one sub-query)

MAJOR, JOBTYPE, DEPT, MEMBERS, WORKSFOR: boolean;
Used for decoding SET TYPES

NOPARTIALQUERIESINQUERY: integer;

STUDENT QUERY, EMPLOYEEQUERY, COMMITTEEQUERY,
FACULTY QUERY,
(Simulated Object Query display windows 4

PARTIALQUERYOBJECTS: PARTIALQUERY;

OBJECTNAMESTRING: OBJSTR;

FACULTY, STUDENT, EMPLOYEE, COMMITTEE: OBJECTS;
(Simulated GLAD University DB Objects 4

QUERY: OBJECT QUERYWINDOW;
{ The Completed Object Query to be translated)

ERSQL: EXTENDEDSQL QUERY;
{ The Sequel Query with COMPLEX TYPES 4

SQL: SQLQUERY;
The Translated equel Query in Relational format }

FSQL: text;
{ The text file that holds object, extended and
relational queries 4

128

0z

procedure INITIALIZE GLOBALS;
begin { INITIALIZEGLOBALS I
{ Set all Gobal variables to initial values }X9

e =; (All arrays subscript start at one)
JOIN := false;
MORETHAN := false;
DEPT := false; MAJOR := false; WORKSFOR false;
JOBTYPE := false; MEMBERS := false;
NO PARTIAL QUERIESINQUERY 0;
STUDENT.NAME :- '

COMMITTEE.NAME '
FACULTY.NAME :-
EMPLOYEE.NAME

for i := 1 to 10 do begin
QUERY[i].ISQUERIED := false;
STUDENT.ATTRIBUTES[i]
COMMITTEE.ATTRIBUTES[i] ' '-
FACULTY.ATTRIBUTES[i] ' '-
EMPLOYEE.ATTRIBUTES[i] ' '-,

end; (for i := 1 to 10 do)

for i 1 to 40 do begin
ERSQL[i] := SENTINEL;
SQL[i] := SENTINEL;

end; { for i := 1 to 40 do }

end; (INITIALIZEGLOBALS

procedure LOAD OBJECTS;
{ Simulated Objects loaded with attributes/sub-objects I

procedure LOAD STUDENT;
begin I LOAD STUDENT)

STUDENT.NAME := 'STUDENT';
STUDENT.ATTRIBUTES[l] '*'-
STUDENT.ATTRIBUTES[2] 'SNAME';
STUDENT.ATTRIBUTES[3] 'ADDRESS';
STUDENT.ATTRIBUTES[4] 'SSNO';
STUDENT.ATTRIBUTES[5] 'GPA';
STUDENT.ATTRIBUTES[6] 'MAJOR';

end; (LOAD STUDENT }

procedure LOAD COMMITTEE;
begin (LOAD COMMITTEE I

COMMITTEE.NAME := 'COMMITTEE';
COMMITTEE.ATTRIBUTESl] :='CNAME';
COMMITTEE.ATTRIBUTES[2] 'MEMBERS';

COMMITTEE.ATTRIBUTES[3] 'PURPOSE';
end; (LOAD COMMITTEE)

129

P. e wrl.0

procedure LOADFACULTY;
begin (LOAD_-FACULTY)

FACULTY. NAME := 'FACULTY';
FACULTY.ATTRIBUTES[1] 'FNAME';
FACULTY.ATTRIBUTES[2] 'AGE';
FACULTY.ATTRIBUTES[3] 'WorksFor';

end; (LOAD-FACULTY

procedure LOAD -EMPLOYEE;
begin { LOAD_-EMPLOYEE)

EMPLOYEE. NAME := 'EMPLOYEE';
EMPLOYEE. ATTRIBUTES [1] = ENAME';
EMPLOYEE.ATTRIBUTES [2] 'PAY';
EMPLOYEE.ATTRIBUTES[3] 'DEPT';
EMPLOYEE.ATTRIBUTES[4] :='JobType';

end; {LOAD-EMPLOYEE}

begin (LOAD-OBJECTS}

*1LOAD STUDENT;
* LOAD COMMITTEE;

LOAD FACULTY;
LOAD-EMPLOYEE;

end; {LOAD-OBJECTS

procedure LOADWINDOWS WITH OBJECTS;
{Query windows loaded with-object information

procedure LOADSTUDENTQUERY;
var

W: integer;
begin (LOADSTUDENTQUERY}

STUDENTQ iUERY.OBJECTINFO.OBJECTNAME
STUDENT.NAME;

STUDENTQUERY.OBJECTINFO.OBJECTINST

* STUDENTQUERY.ATTRIBUTES.ATTRNAME[l]
STUDENT.ATTRIBUTES [1];

STUDENT_-QUERY. ATTRIBUTES .ATTR_-NAME [2]=
STUDENT. ATTRIBUTES [2];

STUDENT_-QUERY.ATTRIBUTES.ATTR_-NAME[3]
STUDENT. ATTRIBUTES [3];

STUDENT_--QUERY.ATTRIBUTES.ATTRNAME[4]
STUDENT. ATTRIBUTES [4];

STUDENTQUERY. ATTRIBUTES. ATTRNAME [5]=
STUDENT.ATTRIBUTES [5];

130

STUDENTQUERY.ATTRIBUTES.ATTRNAME[6] =
STUDENT.ATTRIBUTES[6];

STUDENTQUERY.ISQUERIED := false;

for W := 1 to 6 do
STUDENT QUERY.ATTRIBUTES.ATTR OPERATICT[T7 I'

end; { LOADSTUDENTQUERY)

procedure LOADFACULTYQUERY;
var

W: integer;
begin (LOAD FACULTYQUERY }

FACULTY_QUERY.OBJECTINFO.OBJECTNAME
FACULTY.NAME;

FACULTYQUERY.OBJECTINFO.OBJECTINST :=
1 1.

FACULTYQUERY.ATTRIBUTES.ATTRNAME[1] =
FACULTY.ATTRIBUTES[l];

FACULTYQUERY.ATTRIBUTES.ATTR NAME[2] =
FACULTY.ATTRIBUTES[2];

FACULTYQUERY.ATTRIBUTES.ATTRNAME[3]
FACULTY.ATTRIBUTES[3];

FACULTYQUERY.IS QUERIED := false;
for W := 1 to 3 do
FACULTY QUERY.ATTRIBUTES.ATTROPERATION[W] =

! I ,

end; (LOADFACULTY_QUERY }

procedure LOADCOMMITTEEQUERY;
var

W: integer;
begin { LOAD COMMITTEE-QUERY }

COMMITTEEQUERY.OBJECTINFO.OBJECTNAME
COMMITTEE.NAME;

COMMITTEEQUERY.OBJECTINFO.OBJECTINST
I ~ I

COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[1] =
COMMITTEE.ATTRIBUTES[l];

COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[2]
COMMITTEE.ATTRIBUTES[2];

COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[3] =
COMMITTEE.ATTRIBUTES[3];

COMMITTEEQUERY.ISQUERIED := false;
for W := 1 to 3 do
COMMITTEEQUERY.ATTRIBUTES.ATTR OPERATION[W]

end; (LOADCOMMITTEEQUERY

131

'B 0

nF* -J ~ ! - XP1 -! .. 7F' \F

procedure LOADEMPLOYEEQUERY;
var

W: integer;
begin (LOAD EMPLOYEEQUERY4

EMPLOYEEQUERY. OBJECTINFO. OBJECT NLAM-E
EMPLOYEE.NAME;

EMPLOYEEQUERY.OBJECTINFO.OBJECTINST

EMPLOYEE QUERY. ATTRIBUTES.ATTRNAME [1] =

EMPLOYEE. ATTRIBUTES [1];
EMPLOYEEQUERY. ATTRIBUTES. ATTR_NAME [2]

EMPLOYEE .ATTRIBUTES [2];
EMPLOYEE_-QUERY. ATTRIBUTES. ATTR_NAME [3]=

EMPLOYEE .ATTRIBUTES[33;
EMPLOYEE QUERY. ATTRIBUTES. ATTRNAME [4]=

EMPLOYEE .ATTRIBUTES [4];
EMPLOYEEQUERY.ISQUERIED := false;
for W:=l1to 4do
EMPLOYEEQUERY. ATTRIBUTES. ATTROPERATION [W]

end; { LOADEMPLOYEEQUERY}

* begin { LOADWINDOWSWITHOBJECTS

LOAD STUDENT QUERY;
LOAD EMPLOYEEQUERY;
LOADFACULTY QUERY;
LOADCOMMITTEEQUERY;

end; (LOADWINDOWSWITHOBJECTS

procedure DISPLAYQUERYOPTIONS;
{Screen Display that allows you to exit the query
process or choose various query windows to be
selected, nested, or joined

var
SUBSCRIPT, COUNT, V: integer;

* Q, OPTION: char;
P: PARTIALQUERY;
SINST, CINST, EINST, F INST: boolean;

0

132

procedure CLEAR (INST:boolean);
(Just blank Screen of old information
begin (CLEAR)

if INST then begin
writeln; writeln;
write ('REVIEW YOUR QUERY AND HIT ENTER':50);
readln (Q);
clrscr;

end; (INST)
writeln;

end; (CLEAR }

procedure DISPLAYOBJECTINSTRUCTIONS(INST:BOOLEAN;
D:PARTIALQUERY);

begin (DISPLAY OBJECT INSTRUCTIONS)
{ You may select special instructions '*' to select
all attributes or 'COUNT(*)' to count all rows of
object that meets specified conditions }

if not INST then
writeln('*':24

else
begin

writeln (D.OBJECTINFO.OBJECTINST:22,
1 *1);

writeln (FSQL,
D.OBJECTINFO.OBJECTINST:22, '

end;
end; { DISPLAYOBJECTINSTRUCTIONS }

procedure DISPLAYATTRIBUTEOPERATIONS(INST:BOOLEAN;
D:PARTIALQUERY);

begin (DISPLAY ATTRIBUTE OPERATIONS)
{ Operations on attributes such as >, <>, =, >=, <=
will be displayed to user after they are typed in)

COUNT := COUNT + 1;
if not INST then

writeln('*':24
else

begin
writeln

(D.ATTRIBUTES.ATTROPERATION[COUNT]:16,
'*1:8);

writeln (FSQL,
D.ATTRIBUTES.ATTROPERATION[COUNT]:16,
'*':8);

end;
end; { DISPLAYATTRIBUTEOPERATIONS }

133

{ The blank Query window is initially displayed
to the user. He is asked to input instructions
for objects and relational operations for
attributes. To skip Object Instructions or an
Attribute, hit enter. }

procedure DISPLAY STUDENT;
begin { DISPLAY STUDENT }

COUNT := 0;
if SINST then
begin

STUDENT QUERY := P;
writeln(FSQL,

****************************)

write (FSQL,'*':l0,
STUDENT QUERY.OBJECT INFO.OBJECT NAME:25);
writeln(FSQL,' QUERY -,
writeln(FSQL,
~I**************************

t **************************'*:60)*

end;
C ~writein ('*************************

****************************:60)*

write(1*1:10,
STUDENT QUERY.OBJECT INFO.OBJECT NAME:25);
writeln(' QUERY ', '*''18);
writeln('*************************

****************************:60);

if S INST then
write (FSQL,
** :10,
STUDENTQUERY.OBJECTINFO.OBJECTNAME:16,

*' :10) ;

write (1*1:10,
STUDENTQUERY.OBJECTINFO.OBJECTNAME:16,
'*':10);

DISPLAY OBJECT INSTRUCTIONS(SINST,
STUDENT-QUERY);

if S INST then
write (FSQL,
'*1:10,
STUDENTQUERY.ATTRIBUTES.ATTRNAME[1]:6,
1*1:20);

134

6 ,

write (1*1:10,
STUDENTQUERY.ATTRIBUTES.ATTRNAME[l]:6,
1*1:20);

DISPLAY ATTRIBUTEOPERATIONS(S_INST,
STUDENTQUERY);

if S INST then
write (FSQL,
'*':10,
STUDENTQUERY.ATTRIBUTES.ATTRNAME[2]:7,
1*1:19);

write ('*1:10,
STUDENT QUERY.ATTRIBUTES.ATTRNAME[2]:7,
'*':19);
DISPLAYATTRIBUTEOPERATIONS(S_INST,
STUDENTQUERY);

if S INST then
write (FSQL,
*1:10,

STUDENTQUERY.ATTRIBUTES.ATTRNAME[3]:9,
'*':17);

write (1*1:10,
STUDENTQUERY.ATTRIBUTES.ATTRNAME[3]:9,
1*1:17);

DISPLAYATTRIBUTEOPERATIONS(S_INST,
STUDENTQUERY);

if S INST then
write (FSQL,
'*1:10,

STUDENT QUERY.ATTRIBUTES.ATTRNAME[4]:6,
1*1:20);

write (1*1:10,
STUDENT QUERY.ATTRIBUTES.ATTR NAME[4]:6,
1*1:20);

DISPLAYATTRIBUTEOPERATIONS(S_INST,
STUDENTQUERY);

if S INST then

write (FSQL,
1*1:10,

STUDENTQUERY.ATTRIBUTES.ATTR_NAME[5]:5,
'*':21) ;

135

write ('*':1O,
STUDENTQUERY. ATTRIBUTES .ATTRNAME [51:5,

DISPLAY ATTRIBTJTE OPERATIOiNS(S_INST,
STUDENTQUERY)

if SINST then
write (FSQL,
1*1: 10,
STUDENT_-QUERY. ATTRIBUTES. ATTRNAME [6]: 7,

write (t*1:10,

STUDENT_-QUERY. ATTRIBUTES. ATTRNAME [6]: 7,
1*1:19);

DISPLAYATTRIBUTEOPERATIONS(SINST,
STUDENTQUERY)

if SINST then
begin
writein (FSQL,

writein (FSQL)
end;

if S INST then begin
SUBSCRIPT := SUBSCRIPT + 1;
QUERY[SUBSCRIPT] := STUDENTQUERY;
QUERY[SUBSCRIPT] .15 QUERIED :=true;

end; (if S_INST}

CLEAR (S_INST);
P := STUDENTQUERY;

end; { DISPLAYSTUDENT)

procedure DISPLAY EMPLOYEE;
begin { DISPLAYEMPLOYEE}

COUNT := 0;
if EINST then

begin
EMPLOYEEQUERY P;
writeln(FSQL,

write (FSQL,
0* *:10,

EMPLOYEEQUERY.OBJECTINFO.OBJECTNAME:25);
writeln(FSQL,
*QUERY 1, *1:18);

1361

writeii(FSQL,

end;

** ** * ** * ** * ** * ** ':6)

write (t*1:10,
EMPLOYEE QUERY.OBJECT INFO.OBJECTNAME:25);
writeln(' QUERY ','*'718);

if E INST then
write (FSQL,
1*1:10,
EMPLOYEEQUERY.OBJECTINFO.OBJECTNAME:16,
1*1:10) ;

write ('*':10,
EMPLOYEEQUERY.OBJECTINFO.OBJECTNAME:16,
1*1:10);

* DISPLAY OBJECTINSTRUCTIONS(E_INST,
EMPLOYEEQUERY)

if EINST then-
write (FSQL,

EMPLOYEEQUERY. ATTRIBUTES. ATTRNAME[1]: 7,
1*1:19);-

write (l*1:10,
EMPLOYEEQUERY. ATTRIBUTES. ATTRNAME [1]:7,

DISPLAY -ATTRIBUTE-OPERATIONS(E_INST,
EMPLOYEEQUERY)

if EINST then
write (FSQL,

1*1:10,
EMPLOYEEQUERY. ATTRIBUTES. ATTRNAME [2] :5,

*1:21);

write (1*1:10,
EMPLOYEEQUERY. ATTRIBUTES. ATTRNAME [2]: 5,

DISPLAYATTRIBUTEOPEPATIONS(EINST,
EMPLOYEEQUERY)

137

if E INST then
write (FSQL,
1*1: 10,
EMPLOYEE_-QUERY. ATTRIBUTES .ATTRNAME [31:6,

.*:20);

write (1*1:10,
EMPLOYEE_-QUERY.ATTRIBUTES .ATTRNAME [31:6,
1*1:20) ;

DISPLAYATTRIBUTEOPERATIONS(EINST,
EMPLOYEEQUERY)

if EINST then
write (FSQL,
'*': 10,
EMPLOYEE_-QUERY. ATTRIBUTES. ATTRNAME [4]: 9,
1*1:17) ;

write (1*1:10,
EMPLOYEE_-QUERY. ATTRIBUTES. ATTRNAME [4]: 9,
*':17);

DISPLAYATTRIBUTEOPERATIONS(E_INST,
* EMPLOYEEQUERY)

if EINST then
begin

writein (FSQL,

writeln(FSQL);
end;

if E 'INST then begin
SUBSCRIPT := SUBSCRIPT + 1;
QUERY[SUBSCRIPT] := EMPLOYEEQUERY;
QUERY[SUBSCRIPT] .ISQUERIED :=true;
end; { if EINST)

CLEAR (E_INST);
P :=EMPLOYEEQUERY;

end; {DISPLAYEMPLOYEE

* procedure DISPLAYFACULTY;
begin { DISPLAYFACULTY

COUNT := 0;
if FINST then

begin
FACULTYQUERY P;
writein (FSQL,

138

write (FSQL, '*3:10,
FACULTYQUERY.OBJECTINFO.OBJECT-NAME:2 5);

QUERY 3,1*1:18);

writein (FSQL,

end;

write (3*3:10,
FACULTY -QUERY.OBJECT_-INFO.OBJECTNAME:25);
writein~l QUERY 1,'*':18);

if F INST then
write (FSQL,
3*3: 10,
FACULTY_-QUERY.OBJECTINFO.OBJECTNAME:16,

* 3*1:10);
s write ('*3:10,

FACULTYQUERY.OBJECTINFO.OBJECTNAME:16,

DISPLAY OBJECTINSTRUCTIONS(FINST,
FACULTYQUERY)

if FINST then
write (FSQL,
3*3: 10,
FACULTY_-QUERY. ATTRIBUTES. ATTRNAME [1]: 7,
'*3:19);
write (3*3:10,
FACULTY_QUERY. ATTRIBUTES. ATTRNAME [1]:7,
'*3:19);
DISPLAY_-ATTRIBUTE_-OPERATIONS(FINST,
FACULTY QUERY)

if F INST then
write (FSQL,

* 3*3:10,
FACULTYQUERY. ATTRIBUTES. ATTRNAME [2]: 5,
'*3:21);

write (3*3:10,
FACULTYQUERY .ATTRIBUTES .ATTRNAME [2]: 5,
'*3:21);

*DISPLAY -ATTRIBUTE_-OPERATIONS(FINST,
FACULTYQUERY)

if FINST then
write (FSQL,
3*3:10,
FACULTYQUERY.ATTRIBUTES .ATTR_NAME [31:10,

129

:**16)

write (1*1:10,
FACULTYQUERY. ATTRIBUTrES. ATTR_NAME [31:10,

* ':16);
DI&-PLAY ATTRIBUTEOPERATIONS(F_INST,
FACULTYQUERY)

if FINST then
begin

writein (FSQL,

writeln (FSQL);
end;

writeln(; ************

if F -INST then begin
SUBSCRIPT := SUBSCRIPT + 1;
QUERY[SUBSCRIPT] := FACULTYQUERY;
QUERY[SUBSCRIPT].ISQUERIED := true;

end; (if F -INST}

CLEAR(FINST);
P := FACULTYQUERY;

end; (DISPLAY-FACULTY}

procedure DISPLAY COMMITTEE;
begin (DISPLAYCOMMITTEE}

COUNT := 0;
* if C INST then

begin
COMMITTEEQUERY P;
writein (FSQL,

write (FSQL,
1* :10,
COMMITTEE_-QUERY.OBJECTINFO.OBJECT NAME:25);
writein (FSQL,

* QUERY 1,1*1:18);

writein (FSQL,

end;

write (1*1:10,

COMMITTEEQUERY.OBJECTINFO.OBJECTNAME:25);
writeln(' QUERY 1,1*1:18);

140

if CINST then
write (FSQL,
'*':i0,
COMMITTEEQUERY.OBJECTINFO.OBJECTNAME:16,
1*1:10);
write ('*1:10,
COMMITTEEQUERY.OBJECTINFO.OBJECTNAME:16,
'*':10);
DISPLAY OBJECTINSTRUCTIONS(CINST,
COMMITTEE QUERY);

if CINST then
write (FSQL,
'*1:10,
COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[1]:7,
'*':19);

write ('*1:10,
COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[1]:7,
'*':19);

DISPLAY ATTRIBUTEOPERATIONS(C_INST,
COMMITTEEQUERY);
if C INST then
write (FSQL,
**1:10,
COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[2]:9,
'*':17);
write ('*':1,
COIMMITTEEQUERY.ATTRIBUTES.ATTRNAME[2]:9,
'*9:17);
DISPLAY ATTRIBUTE OPERATIONS(CINST,
COMMITTEE QUERY)-

if CINST then
write (FSQL,
'1*':i0,

COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[3]:9,
'*': 17);

write (1*1:10,
COMMITTEEQUERY.ATTRIBUTES.ATTRNAME[3]:9,
'1*':17);

DISPLAY ATTRIBUTE OPERATIONS(CINST,
* COMMITTEE QUERY)-

if C INST then
begin

*writeln(FSQL,

i *************************** ' : 60) ;

* .writeln(FSQL);
end;~writeln('*************************

i *****************************60)

writeln;

141

if CINST then begin
SUBSCRIPT := SUBSCRIPT + 1;
QUERY[SUBSCRIPT] := COMMITTEEQUERY;
QUERY[SUBSCRIPT].ISQUERIED := true;

end; if C INST }

CLEAR(CINST)
P COMMITTEEQUERY;

end; { DISPLAYCOMMITTEE)

procedure GETINSTRUCTIONS (Var P: PARTIALQUERY);
var

w: integer;
begin { GET INSTRUCTIONS)

write (T INPUT INSTRUCTIONS FOR OBJECT ');
write (P.OBJECT INFO.OBJECTNAME, '- ');
readln (P.OBJECT INFO.OBJECTINST);
for w 1 to 3 do begin

write ('INPUT INSTRUCTIONS FOR ATTRIBUTE '
P.ATTRIBUTES.ATTR NAME[w], ': ');

readln (P.ATTRIBUTES.ATTR7OPERATION[w]);
* end; (for w := 1 to 3 }

if (P.OBJECT INFO.OBJECT NAME = 'EMPLOYEE') or
(P.OBJECT INFO.OBJECT NAME = 'STUDENT') then

begin
write ('INPUT INSTRUCTIONS FOR ATTRIBUTE ',

P.ATTRIBUTES.ATTR NAME[4], ': ');
readln (P.ATTRIBUTES.ATTROPERATION[4]);

end; (P NAME = 'EMPLOYEE or STUDENT')

if (P.OBJECTINFO.OBJECTNAME = 'STUDENT') then
begin

write ('INPUT INSTRUCTIONS FOR ATTRIBUTE '
P.ATTRIBUTES.ATTRNAME[5], ': ');

readln (P.ATTRIBUTES.ATTROPERATION[5]);
write ('INPUT INSTRUCTIONS FOR ATTRIBUTE ',

P.ATTRIBUTES.ATTRNAME[6], ': ');
readln (P.ATTRIBUTES.ATTROPERATION[6]);
if P.ATTRIBUTES.ATTR OPERATION[6] <> '' then

MAJOR := true;
end; (P = STUDENTQUERY

if (P.OBJECTINFO.OBJECT NAME = 'COMMITTEE') then
if P.ATTRIBUTES.ATTROPERATION[2] <> '' then

MEMBERS := true;
if (P.OBJECT INFO.OBJECT NAME = 'FACULTY') then
if P.ATTRIBUTES.ATTROPERATION[3] <> '' then

WORKSFOR := true;

1
|m, 142

if (P.OBJECTINFO.OBJECTNAME = 'EMPLOYEE') then
begin

if P.ATTRIBUTES.ATTRuPERATION[3] <> '' then
DEPT := true;

if P.ATTRIBUTES.ATTR OPERATION[4] <> '' then
JOBTYPE true;

end;

clrscr;

end; { GETINSTRUCTIONS }

procedure SHOW USERHISENTRY;
begin { SHOW USER HISENTRY }

case OPTION of
's','S': begin

S INST true;
STUDENTQUERY.ISQUERIED
true;
DISPLAY STUDENT;
S INST false;

end;
'e','E': begin

E INST := true;
EMPLOYEEQUERY.ISQUERIED
true;
DISPLAYEMPLOYEE;
E INST false;

end;
'f''F': begin

F INST := true;
FACULTYQUERY.ISQUERIED
true;
DISPLAY FACULTY;
F INST := false;

end;
'c', 'C': begin

C INST := true;
COMMITTEEQUERY.ISQUERIED

true;
DISPLAYCOMMITTEE;
C INST := false;

end;
end; { case OPTION of)

end; (SHOWUSERHISENTRY)

143

begin (DISPLAYQUERYOPTIONS

SUBSCRIPT := 0;
S INST := false; E INST := false;
F INST false; CINST false;
clrscr;
for V := 1 to 5 do writeln;
while (OPTION <> 'Q') and (OPTION <> 'q') do
begin

writeln ('ENTER 'IS" FOR STUDENT QUERY':51);
writeln;
writeln ('ENTER "E" FOR EMPLOYEE QUERY':52);
writeln;
writeln ('ENTER "F" FOR FACULTY QUERY':51);
writeln;
writeln ('ENTER "C" FOR COMMITTEE QUERY':53);
writeln;
writeln ('ENTER "Q" TO QUIT SELECTION':51);
writeln;
write (' ':31);
readln (OPTION);
writeln;
clrscr;

case OPTION of
's''S': DISPLAY STUDENT;
'e','E': DISPLAY EMPLOYEE;
'f','F': DISPLAY FACULTY;
'c','C': DISPLAY COMMITTEE;

end; (case OPTION of)

if (OPTION <> 'Q') and (OPTION <> 'q') then
begin

GET INSTRUcTIONS(P);
SHOW USER HIS ENTRY;

end; { if OPTION)
for V := 1 to 5 do writeln;

end; { while OPTION <> 'q' and 'Q' }

end; (DISPLAYQUERYOPTIONS)

procedure HOWMANYPARTIALQUERIES(Var PARTIALS:
integer);

begin (HOWMANYPARTIALQUERIES
PARTIALS := 0;
while QUJERY[PARTIALS + 1].IS QUERIED do

PARTIALS := PARTIALS + 1;
end; { HOWMANYPARTIAL QUERIES I

144

Uv

ru Fr,-Fr - FWr~W WR~~r ~VIWgKWTL "X 6 C1P~P"XP1~t

function MORETHANONEOBJECTUSEDINQUERY: boolean;
var

1: integer;
begin (MORETHANONEOBJECTUSEDINQUERY)

i =0;
while QUERYri + 1 SQEid o

1 2. + 1;
MORE_-THANCNE.OBJECTUSEDIN_-QUERY := (1 < i)

end; (MORETHANONEOBJECTUSEDINQUERY)

procedure SELECT(k: integer);
{Analogous to Relational SELECT
Substituted for Object .P

begin (SELECT)
ERSQL[k] := 'SELECT '

end; {SELECT}

procedure FROM(j,k: integer)!
(Analgous to Relational FROM - Object Name}
begin {FROM}

*ERSQL[k] :='FROM +
QUERY[j].OBJECT_-INFO.OBJECTNAME;

end; (FROM)

procedure JOIN_-OBJECTS;
'~Unless * is3 used for attribute name, the selection
of more than one object window implir.itly specifies
a join of Tables}

begin (JOIN)
*case NO_-PARTIALQUERIESINQUERY of

2: ERSQL[2] := ERSQL[2] + ', 1 +
QUERYC2].OBJECT INFO.OBJECT NAME;

3: ERSQL[2] := ERSi5L[2] + 1,-1 +
* QUERY[2].OBJECTINFO.OBJECTNAME

+ ','+ QUERY[3].OBJECT INFO.OBJECTNAME;
4: ERSQL[2] :=ERSQL[2] + It I +

QUERY[2j].OBJECT -INFO.OBJECT NAME
*+ ','+ QUERY[3].OBJECT -INFO.OBJECT -NAME

+ ','+ QUERY[4] .OBJECTINFO.OBJECT NAME;
*end; {case NUM_-PARTIALQUERIES_INQUERY of

JOIN :=true;
end; {JOIN4

function INSTRUCTIONS ON OBJECTNAME(i:integer):boolean;
begin {INSTRUCTIONS ON_-OBJECTNAME

INSTRUCTIONS ON OBJECTNAME :
''<> QUERY[i].OBJECT INFO.OBJECT INST[l];

end; (INSTRUCTIONS ON OBJECTNAME

145

S,

procedure OBJ OPERATIONS(i: integer);
begin (OBJOPERATIONS)

if (ERSQL1I] = 'SELECT ') and
(QUERY[i].OBJECT INFO.OBJECTINST = '*') then
ERSQL[I] := ERSQL[I] +
QUERY[i].OBJECT INFO.OBJECT NAME + '.' + '*'

else if (ERSQL[I] <> 'SELECT T) and
(QUERY[i].OBJECT INFO.OBJECT INST = '*') then
ERSQL[1] := ERSQL[1] + ', '-+
QUERY[i].OBJECTINFO.OBJECT NAME + '.' + '*'

else if (ERSQL[l] = 'SELECT ') and
(QUERY[i].OBJECT INFO.OBJECT INST 'COUNT')
then ERSQL(l] := ERSQL[I] + 'COUNT(*)'

else if (ERSQL[l] <> 'SELECT ') and
(QUERY[i].OBJECT INFO.OBJECT INST = 'COUNT')
then ERSQL[l] := ERSQL[1] + ', + 'COUNT(*)';

end; (OBJOPERATIONS }

function EXECUTE AND DECODE(i: integer): boolean;
(Global counter X is used to step through all of
the attributes until the query window is decoded
and translated to ERSQL)

begin { EXECUTE AND DECODE)
if QUERY[i].OBJECT INFO.OBJECT NAME = 'STUDENT'
then EXECUTE AND DECODE := (X < 7)
else if QUERY[i].OBJECTINFO.OBJECTNAME =

'EMPLOYEE' then
EXECUTE AND DECODE := (X < 5)

else EXECUTE AND DECODE := C X < 4);
end; (EXECUTEANDDECODE }

function ASTERISKFORATTRIBUTENAME(i:integer):
boolean;

{ Selection of * attribute indicated a nested query }
begin (ASTERISKFOR ATTRIBUTENAME)

ASTERISK FOR ATTRIBUTE NAME
QUERY[i].ATTRIBUTES.ATTR INAME[X] = '*';

end; { ASTERISKFORATTRIBUTENAME I

function EXISTENTIALQUANTIFIER(i: integer): boolean;
{ Used with nested queries)
begin (EXISTENTIALQUANTIFIER)

EXISTENTIAL QUANTIFIER :=
(QUERY[i].ATTRIBUTES.ATTR OPERATION[X] = 'EXISTS')
or (QUERY[i].ATTRIBUTES.ATTROPERATION[X] =

'NOT EXISTS');
end; (EXISTENTIALQUANTIFIER

146

function DOT P ON ATTRIBUTE(i:integer):boolean;
{ Indicates print or .P = SELECT attribute I
var

TEMP: string[30];
begin { DOTPONATTRIBUTE

TEMP :=
TEMP := QUERY[i].ATTRIBUTES.ATTR OPERATION[X];
DOT P ON ATTRIBUTE := ((TEMP[l]-= '.') and
(TEMP[2] = 'P')) ;

end; { DOTPONATTRIBUTE }

procedure RETRIEVESELECT(i: integer);
{ Checks to see what is selected)

procedure CHECK OPS (i: integer; COMPARE: NAME);
{ Allows attribute with mathematical operation
to selected DISTINCT, COUNT, or other
AGGREGATE Ops }

begin { CHECK OPS }
if (COMPARE[l] in [t+' '- ' '/' hen

ERSQL[1] := ERSQL[I] +
QUERY[i].ATTRIBUTES.ATTR NAME[X]

+ COMPARE
else if COMPARE = '' then

ERSQL[1] := ERSQL(1] +
QUERY[i].ATTRIBUTES.ATTR NAME[X]

else if COMPARE = 'DISTINCT' then
ERSQL[I] := ERSQL[1] + 'DISTINCT
+ QUERY[i].ATTRIBUTES.ATTRNAME[X]

else if COMPARE = 'COUNT' then
ERSQL[1] := ERSQL[1] + 'COUNT('
+ QUERY[i].ATTRIBUTES.ATTRNAME[X]
+ ')'

else if COMPARE = 'SUM' then
ERSQL[I] := ERSQL[1] + 'SUM('
+ QUERY[i].ATTRIBUTES.ATTRNAME[X]
+ ')'

else if COMPARE = 'AVG' then
ERSQL[I] := ERSQL[1] + 'AVG('
+ QUERY[i].ATTRIBUTES.ATTRNAME[X]
+ ')'

else if COMPARE = 'MAX' then
ERSQL[1] := ERSQL[1] + 'MAX('
+ QUERY[i].ATTRIBUTES.ATTRNAME[X]
+ ')'

else if COMPARE = 'MIN' then
ERSQL[I] := ERSQL[l] + 'MIN('
+ QUERY[i].ATTRIBUTES.ATTR NAME[X]
+ ')';

end; (CHECKOPS }

147

var
COMPARE: NAME;

begin { RETRIEVE SELECT }
COMPARE :''
COMPARE
copy(QUERY[i].ATTRIBUTES.ATTROPERATION[X],4,27);
if (MORE THAN) or

(INSTRUCTIONS ON OBJECTNAME(i)) then
begin { if MORETHAN)

ERSQL[1] := ERSQL[1 + ', '-
CHECK OPS (i, COMPARE);

end { if MORE THAN }
else if not MORE THAN then
begin (if not MORETHAN }

CHECK OPS (i, COMPARE);
end; (if not MORETHAN }

MORETHAN := true; X := X + 1;
end; { RERIEVE-SELECT }

function NO INSTRUCTIONS(i: integer): boolean;
begin { NOINSTRUCTIONS }

NOINSTRUCTIONS :=
QUERY[i].ATTRIBUTES.ATTROPERATION[X] =

end; (NOINSTRUCTIONS }

procedure NO OP(i: integer);
begin { NO OP)

{ DOES NOTHING BUT IS USED TO ILLUSTRATE THE MAIN I
{ LOOP'S ALGORITHM FOR DECODING THE OBJECT QUERY }
X := X + 1;

end; (NOOP }

function INSTRUCTIONS ON ATTRIBUTE(i: integer): boolean;
begin (INSTRUCTIONS ON ATTRIBUTE I

INSTRUCTIONSONATTRIBUTE :=
QUERY[i].ATTRIBUTES.ATTR OPERATION[X] <> '';

end; { INSTRUCTIONSONATTRIBUTE

procedure RELATIONALOPERATORS;
var

TEMP: string[30];
begin { RELATIONA.LOPERATORS
TEMP := QUERY[i].ATTRIBUTES.ATTROPERATION[X];

148

I

if TEMP(l] in ['>','<','=1] then
begin (if TEMP[j])

if (ERSQL[e+2] = SENTINEL) then
begin { ERSQL[e+2] = SENTINEL

ERSQL[e+2] := 'WHEREI
+ QUERY [iJ .ATTRIBUTES .ATTRNAME [X]
+ ' I + TEMP;

end { ERSQL[e+2] = SENTINEL}

else
begin (ERSQL[e+2] <> SENTINEL}

ERSQL~e+3] := 'AND I
+ QUERY [i] .ATTRIBUTES .ATTRNAME [XJ
+ I I + TEMP;

e e + 1;
end; {ERSQL~e+2] <> SENTINEL

end {if TEMP[1]
else

begin {else
if (ERSQLje+2] = SENTINEL) then

begin (ERSQL[e+2] = SENTINEL
ERSQL[e+2J := 'WHEREI

* ~+ QUERY ~i] .ATTRIBUTES .ATTRNAME [X]
+ I SYNTAX ERROR W/REL OP';

e :=e + 3;
end (ERSQL[e+2] =SENTINEL)

else
begin {ERSQL[e+2]}

ERSQL[e] := 'AND
+ QUERY [i] .ATTRIBUTES. ATTRNAME [X]
+ 'SYNTAX ERROR W/REL OP';
e :=e + 1;

end; (ERSQL[e+2] <> SENTINEL)
end; {else IX := X + 1;

end; {RELATIONALOPERATORSI

procedure SPECIAL_-OPS(i: integer);
begin (SPECIALOPS

e :=3;
*ERSQL[2] :='FROM '+

QUERY[11.OBJECT -INFO.OBJECT NAME;
if QUERY[i] .ATTRIBUTES.ATTR OPERATION[X] 'EXISTS'
then ERSQL~e] := 'WHERE EXISTS';
if QUERY[i].ATTRIBUTES.ATTROPERATION[X]
'NOT EXISTS' then

*ERSQL[e] 'WHERE NOT EXISTS';
e :=e + 1;
ERSQL[e] := '(SELECT*'
FROM(i,e+l); X :=X + 1;

end; (SPECIALOPS

149

.%1

-W0e

0Wr~vvv~W~

procedure ESQLVIEW;
var

i: integer;
LEFTPAREN: boolean;
TEMP: string[50];

begin {ESQLVIEW4
1 1
LEFTPAREN :=false;
while ERSQL~i] <> SENTINEL do

begin (ERSQL~i] <> SENTINEL4
TEMP := ERSQL~i];
if (TEMP[l] = I(') then

LEFT PAREN := true;
if LEFTPAREN then

begin (LEFTIPAREN
A if TEMP(l] = I(' then

ERSQL~i] '

+ TEMP
else

ERSQL[i] :-''+ TEMP;
end; {LEFT_PAREN

if (ERSQL~i+l1 = SENTINEL) and
* LEFT PAREN then

ERSQ5L[i] := ERSQL(i] + ''

writeln(ERSQL~i]);
i :=i + 1;

end; {ERSQL~i] <> SENTINEL}
end; (ESQLVIEW)

procedure SQL VIEW;
var

r: char;
i: integer;
j: DEPT_SET;
k: JOBS;
CONTINUE, DONE, SETTABLEl,
SETTABLE2, SETTABLE3, SETTABLE4: boolean;

procedure TRANSMAJOR(VAR CONTINUE, DONE, SETTABLEl,
* SETTABLE2, SETTABLE3, SETTABLE4:

boolean; VAR i:integer;
j: DEPTSET; k:JOBS);

begin (TRANMAJOR
-~ if ERSQL~i] = 'WHERE MAJOR = "1COMP.SCI."'1 then

SQLri] := 'WHERE IDNAME = "1COMP.SCI."'1
*else if ERSQLIi] = 'WHERE MAJOR <> "COMP.SCI.11'

then SQL[ij : 'WHERE DIDNAME <> "1COMP.SCI."'1
else if ERSQL(i] = 'AND MAJOR ="1COMP.SCI."'v

*then SQL[i] := 'AND DIDNAME = "1COMP.SCI."'1
else if ERSQL[i] = 'AND MAJOR <> "1COMP.SCI."'1
then SQL[i] 'AND DIDNAME <> "1COMP.SCI."'1

150

else if ERSQL[i] = 'WHERE MAJOR = "MATH"' then
SQL[i] := 'WHERE DIDNAME = "MATH"'else if ERSQL[i] = 'WHERE MAJOR <> "MATH"' then
SQL[i] := 'WHERE DIDNAME <> "MATH"'"else if ERSQL[i] = 'AND MAJOR = "MATH"' then
SQL[i] := 'AND DIDNAME < "MATH"'
else if ERSQL[i] = 'AND MAJOR <> "MATH"' then
SQL[i] := 'AND DIDNAME <> "MATH"'
else if ERSQL[i] = 'WHERE MAJOR = "MUSIC"' then
SQL[i] := 'WHERE DIDNAME = "MUSIC"'
else if ERSQL[i] = 'WHERE MAJOR <> "MUSIC"' then
SQL[i] := 'WHERE DIDNAME <> "MUSIC"'
else if ERSQL[i] = 'AND MAJOR = "MUSIC"' then
SQL[i] := 'AND DIDNAME = "MUSIC"'
else if ERSQL(i] = 'AND MAJOR <> "MUSIC"' then
SQL[i] := 'AND DIDNAME <> "MUSIC"'else if ERSQL[i] = 'WHERE MAJOR <> "PHYSICS"'then SQLi] := 'WHERE DIDNAME <> "PHYSICS"

else if ERSQL[i] = 'AND MAJOR = "PHYSICS"'then SQL[i] := 'AND DIDNAME = "PHYSICS"'

else if ERSQL[i] = 'AND MAJOR <> "PHYSICS"'
then SQL[i] := 'AND DIDNAME <> "PHYSICS"'
else if ERSQL[i] = 'WHERE MAJOR = "PHYSICS"'
then SQLri] := 'WHERE DIDNA4E = "PHYSICS"'
else if ERSQL[i] = 'WHERE MAJOR <> "HISTORY"'
then SQL[i] := 'WHERE DIDNAME <> "HISTORY"'
else if ERSQL[i] = 'AND MAJOR = "HISTORY"'
then SQL[i] := 'AND DIDNAME = "HISTORY"'
else if ERSQL[i] = 'AND MAJOR <> "HISTORY"'
then SQL[i] := 'AND DIDNAME <> "HISTORY"'
else if ERSQL[i] = 'WHERE MAJOR = "HISTORY"'
then SQL[i] := 'WHERE DIDNAME = "HISTORY"'

else CONTINUE := TRUE;

if (not SETTABLE) and (not SETTABLE2) and(not SETTABLE3) and (not SETTABLE4) and
(i = 2) thenbegin (SETTABLE

SQL[2] .= ERSQL[2] + ' IDDEPT';

SETTABLEI := true;
end { SETTABLE) a
else if (not SETTABLEI) and (i > 2) then
begin { SETTABLE)
SQL[2] := SQL[2] + ', IDDEPT';

SETTABLEl := true;
end; (SETTABLE)
if not CONTINUE then begin
MAJOR FALSE;
DONE true;
end;

end; (TRAN MAJOR)

151

I

procedure TRANSDEPT(VAR CONTINUE, DONE, SETTABLEI,
SETTABLE2, SETTABLE3,
SETTABLE4: boolean; VAR i:
integer; j: DEPTSET; k:JOBS);

begin (TRANS DEPT)
if ERSQL[i] = 'WHERE DEPT = "COMP.SCI."' then
SQL[i] := 'WHERE DIDNAME = "COHP.SCI."'
else if ERSQL[i] = 'WHERE DEPT <> "COMP.SCI."'
then SQL[i] := 'WHERE DIDNA14E <> "COMP.SCI."'
else if ERSQL[i] = 'AND DEPT = "COMP.SCI."'
then SQL[i] := 'AND DIDNAME = "COMP.SCI."'
else if ERSQL[i] = 'AND 2"ZPT <> "COMP.SCI."'
then SQL[i] := 'AND DIDNAME <> "C3:,iP.SCI."'
else if ERSQL[i] = 'WHERE DEPT = "MATH"' then
SQL[i] := 'WHERE DIDNAME = "MATH"'
else if ERSQL[i] = 'WHERE DEPT <> "MATH"' then
SQL[i] := 'WHERE DIDNAME <> "MATH"'
else if ERSQL[i] = 'AND DEPT = "MATH"' then
SQL[i] := 'AND DIDNAME = "MATH"'
else if ERSQL[i] = 'AND DEPT <> "MATH"' then
SQL[i] := 'AND DIDNAME <> "MATH"'
else if ERSQL(i] = 'WHERE DEPT = "MUSIC"' then
SQL[i] := 'WHERE DIDNAME = "MUSIC"'
else if ERSQL[i] = 'WHERE DEPT <> "MUSIC"' then
SQL[i] := 'WHERE DIDNAME <> "MUSIC"'
else if ERSQL[i] = 'AND DEPT = "MUSIC"' then
SQL~ij :-= 'AND DIDNAME = "MUSIC"'
else if ERSQL[i] = 'AND DEPT <> "MUSIC"' then
SQL(i] := 'AND DIDNAME <> "MUSIC"'
else if ERSQL[i] = 'WHERE DEPT <> "PHYSICS"'
then SQL[i] := 'WHERE DIDNAME <> "PHYSICS"'
else if ERSQL[i] = 'AND DEPT = "PHYSICS"'
then SQL[i] := 'AND DIDNAME = "PHYSICS"'
else if ERSQL[i] = 'AND DEPT <> "PHYSICS"'
then SQL[i] := 'AND DIDNAME <> "PHYSICS"'
else if ERSQL[i] = 'WHERE DEPT = "PHYSICS"'
then SQL[i] := 'WHERE DIDNAME = "PHYSICS"'
else if ERSQL[i] = 'WHERE DEPT <> "HISTORY"'
then SQL[i] := 'WHERE DIDNAME <> "HISTORY"'
else if ERSQL[i] = 'AND DEPT = "HISTORY"'
then SQL[i] := 'AND DIDNAME = "HISTORY"'
else if ERSQL[i] = 'AND DEPT <> "HISTORY"'
then SQL[i] := 'AND DIDNAME <> "HISTORY"'
else if ERSQLri] = 'WHERE DEPT = "HISTORY"'
then SQL~i] := 'WHERE DIDNAME = "HISTORY"'
else CONTINUE true;

152

if (not SETTABLEl) and (not SETTABLE2) and
(not SETTABLE3) and (not SETTABLE4) and (i = 2)
then begin { SETTABLE }

SQL[2] := ERSQL[2] + ', IDDEPT';
SETTABLEI := true;

end (SETTABLE)
else if (not SETTABLEl) and (i > 2) then

begin (SETTABLE)
SQL(2] := SQL[2] + ', IDDEPT';
SETTABLEI := true;

end; { SETTABLE)
if not CONTINUE then begin

DEPT FALSE;
DONE := true;

end;
end; { TRANSDEPT }

procedure TRANSJOBTYPE (VAR CONTINUE, DONE, SETTABLEl,
SETTABLE2, SETTABLE3,
SETTABLE4: boolean;
VAR i: integer; j: DEPT SET;

* k: JOBS) ;
begin (TRANS JOBTYPE)

if ERSQL[i] = 'WHERE JobType = "FACULTY"'
then SQL[i] 'WHERE EIDNAME = "FACULTY"'
else if ERSQL[i] = 'WHERE JobType <> "FACULTY"'
then SQL[i] := 'WHERE EIDNAME <> "FACULTY"'
else if ERSQL[i] = 'AND JobType = "FACULTY"'
then SQL[i] := 'AND EIDNAME = "FACULTY"'
else if ERSQL[i] = 'AND JobType <> "FACULTY"'
then SQL[i] := 'AND EIDNAME <> "FACULTY"'
else if ERSQL[i] = 'WHERE JobType = "SECRETARY"'
then SQL[i] := 'WHERE EIDNAME = "SECRETARY"'
else if ERSQL~i] = 'WHERE JobType <> "SECRETARY"'
then SQL[i] := 'WHERE EIDNAME <> "SECRETARY"'
else if ERSQL[i] = 'AND JobType = "SECRETARY"'
then SQL[iJ := 'AND EIDNAME = "SECRETARY"'
else if ERSQL[i] = 'AND JobType <> "SECRETARY"'
then SQL[i] := 'AND EIDNAME <> "SECRETARY"'
else CONTINUE := true;

if (not SETTABLE2) and (not SETTABLEl) and
(not SETTABLE3) and (not SETTABLE4) and (i = 2)
then begin { SETTABLE }

SQL[2] := ERSQL[2] + ' IDEMP';
SETTABLE2 := true;

end { SETTABLE

153

I

else if (not SETTABLE2) and (i > 2) then
begin { SETTABLE)

SQL(2] := SQL[2] + ', IDEMP';
SETTABLE2 := true;

end; { SETTABLE }

if not CONTINUE then begin
JOBTYPE := FALSE;
DONE := true;

end;
end; { TRANSJOBTYPE }

procedure TRANSWORKSFOR(VAR CONTINUE,DONE, SETTABLEI,
SETTABLE2, SETTABLE3,
SETTABLE4: boolean;

VAR i: integer; j: DEPTSET;
k:JOBS);

begin (TRANS WORKSFOR)
if ERSQL[i] = 'WHERE WorksFor = "COMP.SCI."' then

SQL[i] := 'WHERE DIDNAME = "COMP.SCI."'
else if ERSQL[i] = 'WHERE WorksFor <> "COMP.SCI."'

then SQL[i] := 'WHERE DIDNAME <> "COMP.SCI"'
else if ERSQL[i] = 'AND WorksFor = "COMP.SCI."'

then SQL(i] := 'AND DIDNAME = "COMP.SCI."'
else if ERSQL(i] = 'AND WorksFor <> "COMP.SCI."'

then SQL[i] := 'AND DIDNAME <> "COMP.SCI."'
else if ERSQL[i] = 'WHERE WorksFor = "MATH"' then

SQL[i] := 'WHERE DIDNAME = "MATH"'
else if ERSQL[i] = 'WHERE WorksFor <> "MATH"' then

SQL[i] := 'WHERE DIDNAME <> "MATH"'
else if ERSQL[i] = 'AND WorksFor = "MATH"' then

SQL[i] := 'AND DIDNAME = "MATH"'
else if ERSQL[i] = 'AND WorksFor <> "MATH"' then

SQL[i] := 'AND DIDNAME <> "MATH"'
else if ERSQL[i] = 'WHERE WorksFor = "MUSIC"' then

SQL[i] 'WHERE DIDNAME = "MUSIC"'
else if ERSQL[i] = 'WHERE WorksFor <> "MUSIC"' then

SQL[ij := 'WHERE DIDNAME <> "MUSIC"'

else if ERSQL[i] = 'AND WorksFor = "MUSIC"' then
SQL[i] := 'AND DIDNAME = "MUSIC"'

else if ERSQL[i] = 'AND WorksFor <> "MUSIC"' then
SQLri] 'AND DIDNAME <> "MUSIC"'

else if ERSQL[i] = 'WHERE WorksFor <> "PHYSICS"'
then SQL[i] 'WHERE DIDNAME <> "PHYSICS"'

else if ERSQL[i] = 'AND WorksFor = "PHYSICS"'
then SQL[i] := 'AND DIDNAME = "PHYSICS"'

else if ERSQL[i] 'AND WorksFor <> "PHYSICS"'
then SQL[i] 'AND DIDNAME <> "PHYSICS"'

else if ERSQL[i] = 'WHERE WorksFor = "PHYSICS"'
then SQL[i] := 'WHERE DIDNAME = "PHYSICS"'

else if ERSQL[i] = 'WHERE WorksFor <> "HISTORY"'

154

V 1

then SQL[i] 'WHERE DIDNAME <> "HISTORY"'
else if ERSQL(i] = 'AND WorksFor = "HISTORY"'

then SQLi] := 'AND DIDNAME = "HISTORY"'

else if ERSQL[i] = 'AND WorksFor <> "HISTORY"'
then SQLLI: 'AND DIDNAME <> "HISTCt '<

else if ERSQLfi1 = 'WHERE WorksFor = "HISTORY"'
then SQL[i] 'WHERE DIDNAME = "HISTORY"'

else CONTINUE := true;

if (not SETTABLEl) and (not SETTABLE2) and
(not SETTABLE3) and (not SETTABLE4) and
(i = 2) then
begin { SETTABLE }

SQL[2] := ERSQL[2] + ', IDDEPT';
SETTABLEl := true;

end (SETTABLE)
else if (not SETTABLEl) and (i > 2) then

begin (SETTABLE)
SQL[2] := SQL[2] + ', IDDEPT';

SETTABLEI := true;
end; (SETTABLE }

if not CONTINUE then begin
DEPT FALSE;
DONE := true;

end;

end; { TRANSWORKSFOR }

procedure TRANSMEMBERS (VAR CONTINUE, DONE, SETTABLEl,
SETTABLE2, SETTABLE3,
SETTABLE4: boolean;

VAR i:
integer; j: DEPTSET; k:JOBS);

begin (TRANS MEMBERS }
iEif ERSQL[i] = 'WHERE MEMBERS = LUM'

' then SQL[i] :='WHERE FIDNAME ="LUM"'
else if ERSQL[i] = 'WHERE MEMBERS <> "LUM"'
then SQL[i] := 'WHERE FIDNAME <> "LUM"'
else if ERSQL[iJ = 'AND MEMBERS = "LUM"'
then SQL[i] := 'AND FIDNAME = "LUM"'
else if ERSQL[i] = 'AND MEMBERS <> "LUM"'
then SQL[i] := 'AND FIDNAME <> "LUM"'
else if ERSQL[i] = 'WHERE MEMBERS = "JOHNSON"'
then SQL[i] := 'WHERE FIDNAME = "JOHNSON"'
else if ERSQL[i] = 'WHERE MEMBERS <> "JOHNSON"'
then SQL[i] := 'WHERE FIDNAME <> "JOHNSON"'
else if ERSQL[i] = 'AND MEMBERS = "JOHNSON"'

then SQL[i] := 'AND FIDNAME = "JOHNSON"'
else if ERSQL[i] = 'AND MEMBERS <> "JOHNSON"'

then SQL[i] := 'AND FIDNAME <> "JOHNSON"'

155

'I.

else CONTINUE := true;
if (not SETTABLE2) and (not SETTABLE) and
(not SETTABLE3) and (not SETTABLE4) and (i = 2) then
begin { SETTABLE }

SQL[2] := ERSQL[2] + ', IDCOM';
SETTABLE3 := true;

end (SETTABLE)

else if (not SETTABLE3) and (i > 2) then
begin { SETTABLE)

SQL[2] := SQL(2] + ', IDCOMP';
SETTABLE3 := true;

end; (SETTABLE)

if not CONTINUE then begin
JOTYPE := FALSE;
DONE := true;

end;
end; (TRANS-MEMBERS I

begin (SQLVIEW }
itei;
writeln;
writeln;
write ('HIT ENTER TO VIEW SEQUEL QUERY ':47);
readln (r);
ClrScr;
SETTABLEI false; SETTABLE2 := false;
SETTABLE3 false;
SETTABLE4 := false;
CONTINUE := false;
DONE := false;
SQL[I] := ERSQL[I];
while ERSQL[i] <> SENTINEL do begin

if MAJOR then
TRANSMAJOR(CONTINUE, DONE, SETTABLEl,

SETTABLE2, SETTABLE3,
SETTABLE4, i, j, k);

if DEPT and not DONE then
TRANSDEPT(CONTINUE, DONE, SETTABLEl,

SETTABLE2,
SETTABLE3, SETTABLE4, i, j, k);

if JOBTYPE and not DONE then
TRANSJOBTYPE(CONTINUE, DONE, SETTABLEl,

SETTABLE2, SETTABLE3,
SETTABLE4, i, j, k);

if WORKSFOR and not DONE then
TRANSWORKSFOR(CONTINUE, DONE, SETTABLEl,

SETTABLE2,
SETTABLE3, SETTABLE4, i, j, k);

156

,1

if MEMBERS and not DONE then
TRANS-MEMBERS(CONTINUE, DONE, SETTABLEl,

SETTABLE2,
SETTABLE3, SETTABLE4, i, j, k);

i i + 1;
SQL[i] : ERSQL~i];
DONE :=false;
CONTINUE :=false;

end; (ERSQL[i] <> SENTINEL

for i1 to 5 do writein;
i := 1
while SQL[i] <> SENTINEL do
begin { while SQLri] <> SENTINEL)

writeln (SQLji]);
1 : i + 1;

end; (while SQL~i] <> SENTINEL)
end; (SQLVIEW}

procedure START UP;
* begin { STARTUP)

INITIALIZEGL;OBALS;
-'LOAD OBJECTS;

LOAD WINDOWS WITH OBJECTS;
DISPLAY QUERY OPT-IONS;
HOWMANY PARTIfAL QUERIES

(NO P :ARTIALQ5UERIESINQUERY);
end; { STARTUP 1

procedure GETANDREVIEWOUTPUT;
var

i: integer;
begin {GETANDREVIEWOUTPUT}

i:=1
ESQLVIEW;
SQLVIEW;

A writeln(FSQL); writeln(FSQL);
writeln (FSQL, 'EXTENDED SEQUEL QUERY IS AS FOLLOWS:');

* writeln (FSQL) ;
while ERSQL[i] <> SENTINEL do

begin
writeln(FSQL, ERSQL[i]);
1 = + 1;

end;

writeln(FSQL); writeln(FSQL);
writeln(FSQL,
'TRANSLATED SEQUEL QUERY IS AS FOLLOWS:');
writeln(FSQL);

157

NAIL.

while SQL[i] <> SENTINEL do
begin

writeln(FSQL, SQL[i]);
i i + 1;

end;
writeln(FSQL); writeln(FSQL);

end; (GETANDREVIEWOUTPUT

procedure RESETGLOBALCOUNTER;
begin

X := 1;
end;

begin { ObjectTranslator }

FINISHED := false;
assign (FSQL, 'SEQUEL.SQL');
rewrite (FSQL) ;

REPEAT (Until all the queries are completed }

START UP;
SELECT(e);
FROM (e, e+l);

158

! : ..: .: .z.<.. ;:s .g.;.: .:?.;.;..?< .; .:? ..; <.<.. < ''< -'z < -:-',' -% ?. .-:-'-: .,'':-; -,':?-' -; -:.?.: ;I

{***************** TRANSLATION ALGORITHM **************}

if (MORE_THAN ONEOBJECTUSEDINQUERY) then
JOINOBJECTS;

for i := 1 to NOPARTIALQUERIESINQUERY do begin

if (INSTRUCTIONS ON OBJECTNAME(i)) then
OBJOPERATIONS(i);

while (EXECUTE AND DECODE(i)) do
begin { while (EXECUTE ANDDECODE) }

if (ASTERISK FOR ATTRIBUTENAME(i)) and
EXISTENTIALQUANTIFIER(i) then

SPECIALOPS(i)
else if (DOT P ON ATTRIBUTE(i)) then
RETRIEVE SELECT(i)
else if (NO INSTRUCTIONS(i)) then NO OP(i)
else if (INSTRUCTIONS ONATTRIBUTE(i)) then

RELATIONAL OPERATORS:
end; { while (EXECUTEANDDECODE) 4

if (not EXECUTE AND DECODE(i)) then
RESETGLOBALCOUNTER;

end; (for i := 1 to NOPARITALQUERIESINQUERY }

{**

GET AND REVIEW OUTPUT;
writeln; writeln;
write('ENTER "F" OR "f" TO STOP MAKING QUERIES ':60);
readln(F);
if (F = 'F') or (F = 'f') then FINISHED := true;
UNTIL FINISHED;
close (FSQL);

end. { ObjectTranslator I

159

APPENDIX B

TRANSLATOR OUTPUT

* STUDENT QUERY *

* STUDENT * *

* SNAME * P*
* ADDRESS * *
* SSNO * *
* GPA *>= 3.5 *
* MAJOR * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME
FROM STUDENT
WHERE GPA >= 3.5

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME
FROM STUDENT
WHERE GPA >= 3.5

* FACULTY QUERY *
******************** * ************ ***

* FACULTY * *
* FNAME * .P *
* AGE * >= 30 *
* WorksFor * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT FNAME
FROM FACULTY
WHERE AGE >= 30

160

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT FNAME
FROM FACULTY
WHERE AGE >= 30

.. ************************ * ** ***W**W ****

* EMPLOYEE QUERY *

* EMPLOYEE * *
* ENAME * P*
* PAY * >= 30,000 *
* DEPT * *
* JobType * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT ENAME
FROM EMPLOYEE
WHERE PAY >= 30,000

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT ENAME
FROM EMPLOYEE
WHERE PAY >= 30,000

* COMMITTEE QUERY *

* COMMITTEE * *
* CNAME * .P*

* MEMBERS * *
* PURPOSE * = "RECRUITING" *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT CNAME
FROM COMMITTEE
WHERE PURPOSE = "RECRUITING"

1611

0

~~c~&2 'X '~ ~ " " ~YC~<~' > ~'.. K'.'V 'C

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT CNAME
FROM COMMITTEE
WHERE PURPOSE = "RECRUITING"

****STUDENT QUERY *

* STUDENT * *
* * * COUNT *
* SNAME * *
* ADDRESS * *
* SSNO * *
* GPA * *
* MAJOR * *

******************************* **** **** ***

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT(*)
FROM STUDENT

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT(*)
FROM STUDENT

* STUDENT QUERY *

* STUDENT * *

* SNAME * *
* ADDRESS * *
* SSNO * *
* GPA * *
* MAJOR * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT STUDENT.*
FROM STUDENT

162

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT STUDENT.*
FROM STUDENT

* EMPLOYEE QUERY *

* EMPLOYEE * *
* ENAME * .P COUNT *
* PAY * > 20,000 *
* DEPT * *
* JobType * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT (ENAME)
FROM EMPLOYEE
WHERE PAY > 20,000

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT (ENAME)
FROM EMPLOYEE
WHERE PAY > 20,000

* FACULTY QUERY *

* FACULTY * *
* FNAME * *
* AGE * .P *
* WorksFor * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT AGE
FROM FACULTY

163

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT AGE
FROM FACULTY

* STUDENT QUERY *

* STUDENT * *

* SNAME * .P *
* ADDRESS * *
* SSNO * *
* GPA * >= 3.0 *
* MAJOR * *

* EMPLOYEE QUERY *

* EMPLOYEE * *
* ENAME * =SNAME *
* PAY * >= 20,000 *
* DEPT * *
* JobType * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME
FROM STUDENT, EMPLOYEE
WHERE GPA >= 3.0
AND ENAME = SNAME
AND PAY >= 20,000

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME
FROM STUDENT, EMPLOYEE
WHERE GPA >= 3.0
AND ENAME = SNAME
AND PAY >= 20,000

164

4k

* EMPLOYEE QUERY *

* EMPLOYEE * *
* ENAME * P*
* PAY * >= 30,000 *
* DEPT * *
* JobType * *

* FACULTY QUERY *

* FACULTY * *
* FNAME * =ENAME *
* AGE * >= 30 *
* WorksFor * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT ENAME
FROM EMPLOYEE, FACULTY
WHERE PAY >= 30,000
AND FNAME = ENAME
AND AGE >= 30

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT ENAME
FROM EMPLOYEE, FACULTY
WHERE PAY >= 30,000
AND FNAME = ENAME
AND AGE >= 30

165

. , .- " '. " , . ." ." " - , € " V . _, 0
" -) € ,, '' e -k . e e - e % > e, ,'"" '"""""'k

0***

* FACULTY QUERY *

* FACULTY *

* * * COUNT
* FNA4E * P*
* AGE * >= AVG(AGE) *
* WorksFor * *

* COMMITTEE QUERY *

* COMMITTEE * *
* CNAME * =FNAME *
* MEMBERS * *
* PURPOSE * = "RECRUITING" *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT(*), FNAME
FROM FACULTY, COMMITTEE
WHERE AGE >= AVG(AGE)
AND CNAME = FNAME
AND PURPOSE = "RECRUITING"

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT(*), FNAME
FROM FACULTY, COMMITTEE
WHERE AGE >= AVG(AGE)
AND CNAME = FNAME
AND PURPOSE = "RECRUITING"

166

0***********************T

* STUDENT QUERY *

* STUDENT * *

* SNAME * .P *
* ADDRESS * *
* SSNO * *
* GPA * .P AVG *
* MAJOR * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME, AVG(GPA)
FROM STUDENT

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME, AVG(GPA)
FROM STUDENT

* EMPLOYEE QUERY *

* EMPLOYEE * *
* ENAME * *
* PAY * .PMAX *
* DEPT * *

* JobType * = "SECRETARY" *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT MAX(PAY)
FROM EMPLOYEE
WHERE JobType = "SECRETARY"

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT MAX(PAY)
FROM EMPLOYEE, IDEMP
WHERE EIDNAME = "SECRETARY"

0

167

0rrk R

************************** ***

* FACULTY QUERY *

* FACULTY * *
* FNAME * *
* AGE * .PMIN *
* WorksFor * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT MIN(AGE)
FROM FACULTY

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT MIN(AGE)
FROM FACULTY

* COMMITTEE QUERY *

* COMMITTEE * *
* CNAME * .P COUNT *
* MEMBERS * *
* PURPOSE * = "RECRUITING" *
** ********* ** *** ** *** **** ******** *************

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT(CNAME)
FROM COMMITTEE
WHERE PURPOSE = "RECRUITING"

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT COUNT(CNAME)
FROM COMMITTEE
WHERE PURPOSE = "RECRUITING"

168

05 ."% $',I'' Y',-...J'''" i' ..J''. . .$'', - " . ,"."""", '"""""-". . -"$, -

* STUDENT QUERY

* STUDENT * *

* SNAME * P*
* ADDRESS * *
* SSNO * *
* GPA * .P MAX *

A* JOR * *

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME, MAX(GPA)
FROM STUDENT

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME, MAX(GPA)
FROM STUDENT

** NOTE : With the simulator, * is displayed in window
for STUDENT object and only when needed for
the query with the other objects.

169

LIST OF REFERENCES

1. Wu, C.T., "GLAD: Graphics Language for Database,"
NPS52-87-030, Naval Postgraduate School, July 1987.

2. Zloof, M.M., "Query-by-Example: A Database Language,"
IBM Systems Journal, Vol, 16, No, 4, 1977.

3. Miyao, Jun'ichi, Design of a User-Friendly Interface for
Database Systems, Ph.D. Dissertation, Hiroshima
University, Hiroshima, Japan, January 1987.

4. The Whitewater Group, Inc., Actor Language Manual, 1987.

5. Codd, E.F., "A Relational Model for Large Shared Data
Banks," Communications of the ACM 13, No. 6 (June 1970),
reprinted in Communications of the ACM 26, No. 1
(January 1983).

6. Date, C.J., An Introduction to Database System, Addison
Wesley, 1986.

7. Goldman, K.J., Goldman, S.A., Kanellakis, P.C., and
Zdonik, S.B., "ISIS: Interface for a Semantic Informa-
tion System," ACM 0-89791-160-1/85/005/0328, 1985.

8. Bragger, R.P., Dudler, A., Rebsamen, J., Zehnder, C.A.,
"Gambit: An Interactive Database Design Tool for Data
Structures, Integrity Constraints and Transactions,"
IEEE CH2031-3/84/0000/0399501.00, 1984.

9. Miyao, J., Hirakawa, N., Kikuno, T., Yoshida, N.,
"Design of a Form Interface Language in Database System
Aide," IEEE Workshop on Languages for Automation, 1987.

10. Miyao, J., Tominaga, K., Kikuno, T., and Yoshida, N.,
"Design of a High Level Query Language for End Users,"
IEEE Workshop on Languages for Automation, 1986.

11. Korth, H.F., Silberschatz, A., Database System Concepts,
McGraw-Hill, 1986.

12. Tsur, S., Zaniolo, C., "An Implementation of GEM--
Supporting a Semantic Data Model on a Relational
Backend," ACM 0-89791-128-8/84/006/0286, 1984.

13. Chen, P.P.-S., "The Entity-Relationship Model-Toward a
Unified View of Data," ACM TODS 1, No. 1 (March 1976).

170

0

I

14. Date, C.J., A Guide to DB2, Addison Wesley, 1984.

15. Wong, K.T., Juo, I., GUIDE: Graphical User Interface
for Database Exploration, Applied Mathematic Sciences
Research Program of the Office of Energy Research,
Department of Energy, 1982.

16. Wu, C.T., Schema and Translation Scheme for GLAD, Thesis
Lecture Notes, Naval Postgraduate School, Monterey,
California, April 1988.

.17

171

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information System 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Information Systems (OP-945) 1
Office of the Chief of Naval Operations
Navy Department

Washington, D.C. 20350-2000

4. Curricular OfficerComputer Technology Programs, Code 37

Naval Postgraduate School
Monterey, California 93943-5000

5. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Commandant of the Marine Corps
Code TE06
Headquarters, U.S. Marine Corps
Washington, D.C. 20360-0001

7. Professor C. Thomas Wu, Code 52Wq 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

8. Capt. Paul D. Grenseman 5
c/o Mr. Hector Licong
4210 Palmira Street
Tampa, Florida 33629

172

